PROBLEM SET 01: THE REAL NUMBER SYSTEM

- (1) Let A be a nonempty subset of \mathbb{R} and $M \in \mathbb{R}$. Prove that $M = \sup A$ if and only if
 - (a) M is an upper bound of A,
 - (b) for any $\varepsilon > 0$, there exists $x \in A$ such that $x > M \varepsilon$.
- (2) Let A, B be nonempty subsets of \mathbb{R} with $A \subset B$. Prove

 $\inf B \le \inf A \le \sup A \le \sup B.$

- (3) Prove that for any $x \in \mathbb{R}$, there exists $m \in \mathbb{N}$ such that -m < x.
- (4) Let $x, y \in \mathbb{R}$ such that x < y. Show that there exist $m, n \in \mathbb{N}$ such that $x < x + \frac{1}{m} < y$ and $x < y - \frac{1}{n} < y$.
- (5) (a) Let x > 0. Prove that there exists n ∈ N such that x > ¹/_n.
 (b) Let x ≥ 0. Prove that x = 0 if and only if x ≤ ¹/_n for every n ∈ N.
- (6) Let $U_n = (0, \frac{1}{n})$ and $V_n = (\frac{1}{n}, 1)$. Find $\cap_n U_n$ and $\cup_n V_n$.
- (7) Find the supremum and infimum of the following sets:
 - (a) (a, b), where $a, b \in \mathbb{R}$.
 - (b) $\{1 \frac{1}{n^2} : n \in \mathbb{N}\}.$
 - (c) $\left\{\frac{m+n}{mn}: m, n \in \mathbb{N}\right\}$.
 - (d) $\{x \in \mathbb{R} : x^2 5x + 6 < 0\}.$
 - (e) The set of real numbers in (0, 1) whose decimal expansions contains only 0's and 1's.
- (8) Let A be a nonempty subset of \mathbb{R} and $x, M \in \mathbb{R}$. Define the distance between x and A by

$$d(x, A) = \inf\{|x - a| : a \in A\}.$$

If $M = \sup A$, show that d(M, A) = 0.

- (9) Let $A, B \subset \mathbb{R}$ be nonempty such that $\alpha = \sup A$ and $\beta = \sup B$. Show that A + B is bounded above and $\sup(A + B) = \alpha + \beta$.
- (10) (\mathbb{Q} does not have the LUB property)
 - (a) Let $x \in \mathbb{Q}$ and x > 0. If $x^2 < 2$, show that there exists $n \in \mathbb{N}$ such that $(x + \frac{1}{n})^2 < 2$. Likewise, if $x^2 > 2$, show that there exists $m \in \mathbb{N}$ such that $(x - \frac{1}{m})^2 > 2$.
 - (b) Show that the set $A = \{r \in \mathbb{Q} : r > 0, r^2 < 2\}$ is bounded above in \mathbb{Q} but it does not have the LUB property in \mathbb{Q} .
 - (c) From part (b), \mathbb{Q} does not have the LUB property.
 - (d) Let A be the set defined in part (b) and $M = \sup A$. Show that $M^2 = 2$.