PROBLEM SET 01: THE REAL NUMBER SYSTEM

(1) Let A be a nonempty subset of \mathbb{R} and $M \in \mathbb{R}$. Prove that $M=\sup A$ if and only if
(a) M is an upper bound of A,
(b) for any $\varepsilon>0$, there exists $x \in A$ such that $x>M-\varepsilon$.
(2) Let A, B be nonempty subsets of \mathbb{R} with $A \subset B$. Prove

$$
\inf B \leq \inf A \leq \sup A \leq \sup B
$$

(3) Prove that for any $x \in \mathbb{R}$, there exists $m \in \mathbb{N}$ such that $-m<x$.
(4) Let $x, y \in \mathbb{R}$ such that $x<y$. Show that there exist $m, n \in \mathbb{N}$ such that $x<x+\frac{1}{m}<y$ and $x<y-\frac{1}{n}<y$.
(5) (a) Let $x>0$. Prove that there exists $n \in \mathbb{N}$ such that $x>\frac{1}{n}$.
(b) Let $x \geq 0$. Prove that $x=0$ if and only if $x \leq \frac{1}{n}$ for every $n \in \mathbb{N}$.
(6) Let $U_{n}=\left(0, \frac{1}{n}\right)$ and $V_{n}=\left(\frac{1}{n}, 1\right)$. Find $\cap_{n} U_{n}$ and $\cup_{n} V_{n}$.
(7) Find the supremum and infimum of the following sets:
(a) (a, b), where $a, b \in \mathbb{R}$.
(b) $\left\{1-\frac{1}{n^{2}}: n \in \mathbb{N}\right\}$.
(c) $\left\{\frac{m+n}{m n}: m, n \in \mathbb{N}\right\}$.
(d) $\left\{x \in \mathbb{R}: x^{2}-5 x+6<0\right\}$.
(e) The set of real numbers in $(0,1)$ whose decimal expansions contains only 0 's and 1's.
(8) Let A be a nonempty subset of \mathbb{R} and $x, M \in \mathbb{R}$. Define the distance between x and A by

$$
d(x, A)=\inf \{|x-a|: a \in A\} .
$$

If $M=\sup A$, show that $d(M, A)=0$.
(9) Let $A, B \subset \mathbb{R}$ be nonempty such that $\alpha=\sup A$ and $\beta=\sup B$. Show that $A+B$ is bounded above and $\sup (A+B)=\alpha+\beta$.
(10) $(\mathbb{Q}$ does not have the LUB property)
(a) Let $x \in \mathbb{Q}$ and $x>0$. If $x^{2}<2$, show that there exists $n \in \mathbb{N}$ such that $\left(x+\frac{1}{n}\right)^{2}<2$. Likewise, if $x^{2}>2$, show that there exists $m \in \mathbb{N}$ such that $\left(x-\frac{1}{m}\right)^{2}>2$.
(b) Show that the set $A=\left\{r \in \mathbb{Q}: r>0, r^{2}<2\right\}$ is bounded above in \mathbb{Q} but it does not have the LUB property in \mathbb{Q}.
(c) From part (b), \mathbb{Q} does not have the LUB property.
(d) Let A be the set defined in part (b) and $M=\sup A$. Show that $M^{2}=2$.

