Problem Set 08: Fixed point iteration method and Newton's method

- (1) Let $g: \mathbb{R} \longrightarrow \mathbb{R}$ be differentiable and $\alpha \in \mathbb{R}$ be such that $|g'(x)| \leq \alpha < 1$ for all $x \in \mathbb{R}$.
 - (a) Show that the sequence generated by the fixed point iteration method for g converges to a fixed point of g for any starting value $x_0 \in \mathbb{R}$.
 - (b) Show that g has a unique fixed point.
- (2) Let $x_0 \in \mathbb{R}$. Using the fixed point iteration method generate a sequence of approximate solutions of the equation $x \frac{1}{2}\sin x = 1$ for the starting value x_0 .
- (3) Let $g:[0,1] \longrightarrow [0,1]$ be defined by $g(x) = \frac{1}{1+x^2}$. Let (x_n) be the sequence generated by the fixed point iteration method for g with the starting value $x_0 = 1$. Show that (x_n) converges.
- (4) Let $f(x) = e^{-\frac{1}{x^2}}$ if $x \neq 0$ and f(0) = 0. Suppose that $0 < x_0 < 1$ and (x_n) be the sequence generated by Newton's method with the starting value x_0 . Show that (x_n) converges.
- (5) Let $f(x) = 3x^{1/3}$. Let $x_0 > 0$ and (x_n) be the sequence generated by Newton's method. Show that (x_n) is unbounded.