Problem Set 07: Mean Value Theorem

- (1) Let $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ be differentiable. Assume that f(0) = g(0) and $f'(x) \leq g'(x)$, $\forall x \in \mathbb{R}$. Show that $f(x) \leq g(x)$ for $x \geq 0$.
- (2) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be differentiable. Assume that $1 \leq f'(x) \leq 2$ for $x \in \mathbb{R}$ and f(0) = 0. Prove that $x \leq f(x) \leq 2x$ for $x \geq 0$.
- (3) Use the mean value theorem (MVT) to establish the following inequalities
 - (a) $e^x > 1 + x$, $\forall x \in \mathbb{R}$.
 - (b) $\frac{y-x}{y} < \log \frac{y}{x} < \frac{y-x}{x}$ for 0 < x < y.
 - (c) $\frac{1}{2\sqrt{n+1}} < \sqrt{n+1} \sqrt{n} < \frac{1}{2\sqrt{n}}, \ \forall \ n \in \mathbb{N}.$
 - (d) If $e \le a < b$, then $a^b > b^a$. (Hint: Use part (b)).
 - (e) Bernoullis Inequality: Let $\alpha > 0$ and $h \ge -1$. Then

$$(1+h)^{\alpha} \le 1+\alpha h$$
, for $0 < \alpha \le 1$,

$$(1+h)^{\alpha} \geq 1+\alpha h$$
, for $\alpha \geq 1$.

- (4) Prove that $\frac{\sin x}{x}$ is strictly decreasing on $(0, \pi/2)$.
- (5) Let $f:[0,1] \longrightarrow \mathbb{R}$ be differentiable such that $|f'(x)| < 1, \ \forall \ x \in [0,1]$. Show that f has at most one fixed point.
- (6) Let $f:[0,1] \longrightarrow \mathbb{R}$ be differentiable and f(0)=0. Suppose that $|f'(x)| \le |f(x)| \ \forall \ x \in [0,1]$. Show that f=0.
- (7) Let $f:(0,1] \longrightarrow \mathbb{R}$ be differentiable with |f'(x)| < 1. Define $a_n := f(1/n)$. Show that (a_n) converges.
- (8) Let $f:[0,1] \longrightarrow \mathbb{R}$ and $a_n:=f(\frac{1}{n})-f(\frac{1}{n+1})$. Prove the following:
 - (a) If f is continuous, then $\sum_{n=1}^{\infty} a_n$ converges.
 - (b) If f is differentiable and $|f'(x)| < \frac{1}{2}, \ \forall \ x \in [0,1], \text{ then } \sum_{n=1}^{\infty} a_n(\cos n)\sqrt{n} \text{ converges.}$
- (9) Let $f:[a,b] \longrightarrow \mathbb{R}$ be differentiable and $a \ge 0$. Using Cauchy mean value theorem, show that there exist $c_1, c_2 \in (a,b)$ such that $\frac{f'(c_1)}{a+b} = \frac{f'(c_2)}{2c_2}$.
- (10) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be such that f''(c) exists at some $c \in \mathbb{R}$, Using L'Hopital rule, show that

$$\lim_{h \to 0} \frac{f(c+h) - 2f(c) + f(c-h)}{h^2} = f''(c).$$

Show with an example that if the above limit exists then f''(c) may not exists.

1