Problem Set 05: IVP, Existence of maxima/minima

- (1) Prove that $x = \cos x$ for some $x \in (0, \pi/2)$.
- (2) Prove that $xe^x = 1$ for some $x \in (0, 1)$.
- (3) Are there continuous functions $f : \mathbb{R} \longrightarrow \mathbb{R}$ such that $f(x) \notin \mathbb{Q}$ for $x \in \mathbb{Q}$ and $f(x) \in \mathbb{Q}$ for $x \notin \mathbb{Q}$.
- (4) Let $f:[0,1] \longrightarrow \mathbb{R}$ be continuous. Assume that the image of f lies in $[1,2] \cup (5,10)$ and that $f(1/2) \in [0,1]$. What can you conclude about the image of f.
- (5) Let p be a real polynomial function of odd degree. Show that $p : \mathbb{R} \longrightarrow \mathbb{R}$ is an onto function.
- (6) Let $f : [0, 2\pi] \longrightarrow [0, 2\pi]$ be continuous such that $f(0) = f(2\pi)$. Show that there exists $x \in [0, 2\pi]$ such that $f(x) = f(x + \pi)$.
- (7) Show that $x^4 + 5x^3 7$ has at least two real roots.
- (8) Let $p(X) := a_0 + a_1 X + \dots + a_n X^n$, n is even. If $a_0 a_n < 0$, show that p has at least two real roots.
- (9) Let $f : [a, b] \longrightarrow \mathbb{R}$ be continuous. Show that f([a, b]) = [c, d] for some $c, d \in \mathbb{R}$ with $c \leq d$. Can you identify c, d.
- (10) Does there exist a continuous function $f: [0,1] \longrightarrow (0,\infty)$ which is onto.
- (11) Does there exist a continuous function $f:[a,b]\longrightarrow (0,1)$ which is onto.
- (12) Let $f : [a, b] \longrightarrow \mathbb{R}$ be continuous such that f(x) > 0 for all $x \in [a, b]$. Show that there exists $\delta > 0$ such that $f(x) > \delta$ for all $x \in [a, b]$.
- (13) Construct a continuous bijection $f:[a,b] \longrightarrow [c,d]$ such that f^{-1} is continuous.
- (14) Construct a continuous function from (0,1) onto [0,1]. Can such a function be one-one.
- (15) Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function such that
 - (a) $f(\mathbb{R}) \subset (-2, -1) \cup [1, 5)$ and
 - (b) f(0) = e.

Can you give realistic bounds for f.