Problem Set 04: Limit and Continuity

- (1) Find all values of α such that $\lim_{x\to -1} \frac{2x^2 \alpha x 14}{x^2 2x 3}$ exists. Find the limit.
- (2) Let $\lim_{x\to 0} \frac{f(x)}{x^2} = 5$. Show that $\lim_{x\to 0} \frac{f(x)}{x} = 0$.
- (3) Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ and $x_0 \in \mathbb{R}$. Suppose $\lim_{x \to x_0} f(x)$ exists. Show that $\lim_{x \to 0} f(x+x_0) = \lim_{x \to x_0} f(x)$.
- (4) Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function such that f(c) > 0 for some $c \in \mathbb{R}$. Show that there exists an $\epsilon > 0$ such that f(x) > 0 for all $x \in (c \epsilon, c + \epsilon)$.
- (5) $f : \mathbb{R} \longrightarrow \mathbb{R}$ defined by f(x) = |x|. Show that f is continuous on \mathbb{R} .
- (6) Discuss the continuity/discontinuity for the following functions
 - (a) $f : \mathbb{R} \longrightarrow \mathbb{R}$ defined by $f(x) = \min\{x [x], 1 + [x] x\}$, where [x] stands for the greatest integer less than or equal to x.
 - (b) $f : \mathbb{R} \longrightarrow \mathbb{R}$ defined by

$$f(x) = \begin{cases} 3x+1, & \text{if } x \in \mathbb{Q} \\ x, & \text{otherwise} \end{cases}$$

(c) $f: [0, \pi] \longrightarrow \mathbb{R}$ defined by

$$f(x) = \begin{cases} 0, & \text{if } x = 0\\ x \sin \frac{1}{x} - \frac{1}{x} \cos \frac{1}{x}, & \text{otherwise.} \end{cases}$$

- (7) Let A be a nonempty subset of \mathbb{R} and $f : \mathbb{R} \longrightarrow \mathbb{R}$ defined by $f(x) = \inf\{|x-a| : a \in A\}$. Show that f is continuous on \mathbb{R} .
- (8) Let $J = \{\frac{1}{n} : n \in \mathbb{N}\}$. Show that any function $f : J \longrightarrow \mathbb{R}$ is continuous on J.
- (9) A function $f : [a, b] \longrightarrow \mathbb{R}$ is said to be Lipschitz on [a, b] if there exists L > 0 such that $|f(x) f(y)| \le L|x y|$ for all $x, y \in [a, b]$. Show that any Lipschitz function is continuous.
- (10) Let $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ be continuous such that given any two points x < y, there exists a point z such that x < z < y and f(z) = g(z). Show that f(x) = g(x) for all x.
- (11) Suppose $f : [0, \infty) \longrightarrow \mathbb{R}$ be continuous such that $\lim_{x \to \infty} f(x)$ exists. Show that f is bounded.
- (12) Let $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ be continuous. If f(x) = g(x) for $x \in \mathbb{Q}$, then show that f = g.