PROBLEM SET 02: CONVERGENCE OF SEQUENCES AND MONOTONE SEQUENCES

- (1) Let (x_n) be a sequence such that $x_n \to x$ and $x_n \to y$. Prove that x = y.
- (2) Investigate the Convergence of the Sequence (x_n) where
 - (a) $x_n = \frac{\log(n)}{n}$.
 - (b) $x_n = \frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} \cdots + \frac{1}{\sqrt{n^2+n}}.$
 - (c) $x_n = a^n (2n)^b$ where 0 < a < 1 and b > 1.
 - (d) $x_n = (a^n + b^n)^{1/n}$ where 0 < a < b.
 - (e) $x_n = n^{\alpha} (n+1)^{\alpha}$ for some $\alpha \in (0,1)$.
- (3) Let $x_n = (-1)^n$. Show that the sequence (x_n) does not converge.
- (4) Let (x_n) be a sequence. Prove that $x_n \to 0$ if and only if $|x_n| \to 0$.
- (5) Let $x_n \to x$. Assume that $x_n \ge 0 \forall n$. Show that $x \ge 0$.
- (6) Show that the sequence (x_n) is bounded and monotone, and find its limit.
 - (a) $x_1 = 1$ and $x_{n+1} = \frac{4+3x_n}{3+2x_n}$.
 - (b) $x_{n+1} = \frac{1}{2}(x_n + \frac{a}{x_n})$ where a > 0 and $x_1 > 0$. (Hint: Use AM-GM inequality.)
 - (c) $x_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$.
 - (d) $x_n = 1 + \frac{1}{1} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$.
- (7) Show that the sequence $x_n = 1 + \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$ is monotonically increasing but not bounded above. Hence, it is not convergent. Compare with Question 6 (d). Show that $x_n \to \infty$.
- (8) Show that $(n!)^{\frac{1}{n}} \to \infty$.
- (9) Let (x_n) be bounded. Assume that $x_{n+1} \ge x_n 2^{-n}$. Show that (x_n) is convergent.
- (10) Prove that the following sets are infinite dimensional vector spaces.
 - (a) ℓ_{∞} : Set of all bounded sequences.
 - (b) c: Set of all convergent sequences.
 - (c) c_0 : Set of all of all sequences converging to 0.
 - (d) c_{00} : Set of all sequences whose terms are zero after some stage.
 - (e) Prove $c_{00} \subseteq c_0 \subseteq c \subseteq \ell_{\infty}$. Are the inlusions proper?