PROBLEM SET 01: THE REAL NUMBER SYSTEM

- (1) Show that the set of natural numbers \mathbb{N} is not bounded above in \mathbb{R} .
- (2) Let A be a nonempty bounded above subset of \mathbb{R} . If α and β are least upper bounds of A, show that $\alpha = \beta$.
- (3) Let $x, y \in \mathbb{R}$ such that x < y. Show that there exist $m, n \in \mathbb{N}$ such that $x < x + \frac{1}{m} < y$ and $x < y - \frac{1}{n} < y$.
- (4) Find the supremum and infimum of the following sets:
 - (a) $\{1 \frac{1}{n^2} : n \in \mathbb{N}\}.$
 - (b) $\left\{\frac{m}{|m|+n}: m \in \mathbb{Z}, n \in \mathbb{N}\right\}$.
 - (c) $\{\frac{m+n}{mn} : m, n \in \mathbb{N}\}.$
 - (d) $\{x \in \mathbb{R} : x^2 5x + 6 < 0\}.$
 - (e) $\{x + x^{-1} : x > 0\}.$
 - (f) The set of real numbers in (0, 1) whose decimal expansions contains only 0's and 1's.
- (5) Let A be a nonempty subset of \mathbb{R} and $\alpha \in \mathbb{R}$. Show that $\alpha = \sup A$ if and only if $\alpha \frac{1}{n}$ not an upper bound of A but $\alpha + \frac{1}{n}$ is an upper bound of A for every $n \in \mathbb{N}$.
- (6) Let A be a nonempty subset of \mathbb{R} and $x \in \mathbb{R}$. Define the distance between x and A by

$$d(x, A) = \inf\{|x - a| : a \in A\}.$$

If $\alpha \in \mathbb{R}$ is the least upper bound of A, show that $d(\alpha, A) = 0$.

- (7) Suppose there is an orchard, full of trees. Consider the following statement.
 In each tree in the orchard, we can find a branch on which all of the leaves are green.
 Write the above statement as a mathematical statement using quantifiers. Also, write its negation.
- (8) Let A, B, C be three subsets of ℝ. What is the negation of the following statement: For every ε > 1, there exists a ∈ A and b ∈ B such that for all c ∈ C, |a − c| < ε and |b − c| > ε.