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In the first section, we explain the background and the main theme of this thesis and

provide a chapter-wise summary of its main results. In the second section, we introduce

some notation and preliminaries that will be used throughout this thesis. In the last section

we state all the main results proved in this thesis.

Introduction

Projections are basic building blocks in understanding the structure of a Banach space.

However, constructing a projection with desired properties often turns out to be a daunting
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task. By a projection we always mean a bounded linear operator P such that P 2 = P .

We say a projection P is contractive (respectively, bi-contractive) if ‖P‖ = 1 (respectively,

‖P‖ = ‖I − P‖ = 1).

Attempt to describe the structure of contractive or bi-contractive projections on classi-

cal Banach spaces like C0(Ω) or Lp and on other spaces of operators, specially C∗- algebras,

had received lot of attention in past as well as in recent time. The seminal work by Lin-

denstrauss [27] and the book [22] by H. E. Lacey are two classical references for the study

of contractive projections.

In this thesis we propose to study a class of projections which are related to the isome-

tries. To motivate, consider an isometry T on a Banach space X such that T n = I, for

some n ≥ 2. Then it is immediate that P0 = I+T+···+Tn−1

n
is a norm one projection on

X. Also, note that (see Theorem 0.0.13 in the next section) T can always be written as

T = P0 + λ1P1 + · · · + λn−1Pn−1, where λ1, . . . , λn−1 are (n − 1) roots of unity and Pi,

i = 1, . . . , n − 1 are corresponding eigen projections for T . Taking cue from above we

define the following.

Definition 0.0.1. Let X be a complex Banach space. A projection P0 on X is said to be

n-circular projection, n ≥ 2, if there exist projections P1, P2, . . . , Pn−1 on X such that

(a) P0 ⊕ P1 ⊕ · · · ⊕ Pn−1 = I,

(b) P0 +λ1P1 + · · ·+λn−1Pn−1 is a surjective isometry for all λi ∈ T, i = 1, 2, . . . , n−1.

Definition 0.0.2. Let X be a complex Banach space. A projection P0 on X is said to

be a generalized n-circular projection, n ≥ 2, if there exist λ1, λ2, . . . , λn−1 ∈ T \ {1},

λi, i = 1, 2, . . . , n− 1 which are of finite order and projections P1, P2, . . . , Pn−1 on X such

that

(a) λi 6= λj for i 6= j,

(b) P0 ⊕ P1 ⊕ · · · ⊕ Pn−1 = I,

(c) P0 + λ1P1 + · · ·+ λn−1Pn−1 is a surjective isometry.
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The case of n = 2 has received recent attention. A projection satisfying the condition

of Definition 0.0.1 for n = 2 is referred as bi-circular projection. Similarly a projection

satisfying the condition of Definition 0.0.2 for n = 2 is referred as generalized bi-circular

projection (henceforth GBP). Bi-circular projections were first studied by Stachó and Zalar

in [33, 34]. Their motivation to study these projections is from complex analysis, more

specifically from the study of Reinhardt domains (see [32, 34]). Jamison [19] showed

that bi-circular projections are Hermitian. Let B(X) denote the set of all bounded linear

operators on X. An operator T ∈ B(X) is said to be Hermitian if eiθT is an isometry for

every θ ∈ R. Hermitian operators on various complex Banach spaces were investigated

by many authors, see for example [5], [6], [7] and [15]. As a consequence of Jamison’s

result, many results on bi-circular projections follow from previously established results on

Hermitian operators.

The notion of generalized bi-circular projection was introduced by Fošner, Ilǐsević and

Li in [16]. The description of generalized bi-circular projections for different Banach spaces

were studied in [9, 11, 14, 16, 26]. It was shown in [26] that GBPs are bi-contractive. P.

K. Lin in [26] proved that if P + λ(I −P ) is an isometry and λ is of infinite order, then P

is a bi-circular projection.

The central theme of the results which we prove in this thesis is to understand the

structures of GBPs and of generalized 3-circular projections in general, and in particular

classical spaces like C(Ω) and spaces of matrices. It turns out that these spaces are rich

with GBPs and generalized 3-circular projections.

It is quite clear from Definition 0.0.2 and the discussion presented above that the

descriptions of GBPs and generalized 3-circular projections depend on the isometries under

a given norm. We use results related to structures of the isometry groups on the above

spaces heavily in proving our results in subsequent chapters.

We now give a chapter-wise summary of the results proved in this thesis.

In Chapter 2, we prove several results concerning the representation of projections on

Banach spaces.

An operator T ∈ B(X) is of order k (a positive integer) if T k = I and T i 6= I for any
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i < k. A reflection is an operator of order 2. An isometric reflection is both a reflection

and an isometry.

In [16], the authors show that a GBP on finite dimensional spaces with respect to various

G-invariant norms is equal to the average of the identity with an isometric reflection. This

result was further extended in [11] to many other spaces, for example C(Ω) and C(Ω, X).

In fact it is known that, see [25, Theorem 4.4], any bi-contractive projection on C(Ω) is

the average of identity and an isometric reflection. The same characterization was also

proved in [10] and [21] for GBPs on spaces of Lipschitz functions, and in [26] for Lp-spaces,

1 ≤ p <∞, p 6= 2.

This raises the question whether every GBP on a Banach space is equal to the average of

the identity operator with an isometric reflection. In other words, whether the λ associated

with a GBP is always −1. We answer this question negatively in this chapter. Further

we show that if P is a GBP on X, then it is equal to the average of the identity operator

and a reflection R, where R belongs to the algebra generated by the isometry associated

with P . If the λ associated with P is of even order then R is an isometry, otherwise it

may not be. We give an example of a P which is a GBP such that P = I+R
2

, and R is not

an isometry. We also give an example of a generalized 3-circular projection which is not a

GBP.

Let k be a positive integer and z = (z(0), . . . , z(k− 1)). We define the discrete Fourier

coefficient of z by ẑ(m) =
∑k−1

n=0 z(n)ρmn, where ρ = e−2πi/k. Then z is the inverse discrete

Fourier transform of ẑ, that is, z = IDFT (ẑ) (see [35]). If S is a subset of {0, . . . , k − 1},

we denote by δS the vector with components given by δ(i) = 1 for i ∈ S and δ(i) = 0

otherwise.

We prove the following result.

Let P ∈ B(X) such that P = λ0I + λ1T + λ2T
2 + · · · + λn−1T

n−1, where λi; i =

0, 1, . . . , n − 1 are nonzero complex numbers and T is an operator of order n. Then P

is a projection if and only if λ = (λ0, λ1, . . . , λn−1) is the IDFT of δS, for some S ⊆

{0, . . . , n− 1}.

In the last section of this chapter, we extend results proved by Botelho and Jamison
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in [11] regarding the structure of GBPs on C(Ω, X), where Ω is a compact connected

Hausdorff space and X has the Strong Banach-Stone property. We also characterize GBPs

on c0-sums of Banach spaces.

The content of this chapter is entirely taken from [1].

In Chapter 3 we describe projections in the convex hull of 3-isometries in C(Ω).

If P is a proper projection on a Banach space X which can be written as P = αT1 +

(1 − α)T2 where Ti ∈ G(X), i = 1, 2 and α ∈ (0, 1), then α = 1
2
. To see this, since P is

proper, there exists 0 6= x ∈ X such that Px = 0. Thus, αT1x = − (1 − α)T2x. Since T1

and T2 are isometries, taking norms on both sides we get α = 1
2
. One can ask that if we

take P = α1T1 +α2T2 +α3T3, where αi > 0, Ti ∈ G(C(Ω)); i = 1, 2, 3 and α1 +α2 +α3 = 1,

whether αi = 1/3 ? In this chapter we prove that this is actually true in C(Ω).

Botelho, in [9], proved that if P is a projection which is in the convex combination of

two surjective isometries on C(Ω), then P is a GBP. Here, Ω is a compact Hausdorff space

We prove that a norm one projection in the convex hull of 3 surjective isometries on

C(Ω) is either a GBP or a generalized 3-circular projection. We show that, if P is a

projection on C(Ω) such that P = α1T1 + α2T2 + α3T3, where αi > 0, Ti ∈ G(C(Ω));

i = 1, 2, 3 and α1 + α2 + α3 = 1. Then either,

(a) αi = 1
2

for some i = 1, 2, 3 and Tj = Tk, j, k 6= i or

(b) α1 = α2 = α3 = 1
3

and T1, T2, T3 are distinct surjective isometries.

The surjective isometries on C(Ω) is given by the Banach-Stone Theorem (see Theorem

0.0.14). If T : C(Ω) −→ C(Ω) is a surjective isometry, then there exist a homeomorphism

φ : Ω −→ Ω and a continuous map u : Ω −→ T such that

Tf(ω) = u(ω)f(φ(ω)), ∀ f ∈ C0(Ω), ω ∈ Ω.

Let P0 be a generalized 3-circular projection on X. Then as in Definition 0.0.2, we will

refer to T and λ1, λ2, the isometry and λ1, λ2 associated with the generalized 3-circular

projection P0 respectively.

We also show that if P0 is a generalized 3-circular projection on C(Ω), then λ1, λ2

associated with P0 are cube roots of unity.
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All the results of this chapter appeared in [2].

Chapter 4 gives complete description of generalized 3-circular projections on Cn with

a symmetric norm and on spaces of matrices with a unitarily invariant norm and unitary

congruence invariant norm.

A norm ‖·‖ on Cn is called symmetric if ‖Πx‖ = ‖x‖ for all x ∈ Cn and all permutation

matrices Π. A norm ‖ · ‖ on Mm,n(C) is called unitarily invariant if ‖UAV ‖ = ‖A‖, for

all A ∈ Mm,n(C) and all unitary matrices U and V in Mm(C) and Mn(C). A unitarily

invariant norm on Mm,n(C) is also referred as symmetric norms (see [8]). Let Sn(C) be

the set of all n × n symmetric matrices over C. A norm ‖ · ‖ on Sn(C) is called unitary

congruence invariant if ‖U tAU‖ = ‖A‖ for all A ∈ Sn(C), where U is any unitary matrix

in Mn(C).

If P0 is a generalized 3-circular projection Cn with a symmetric norm, then we show

that P0 is either a bi-circular projection or λ1, λ2 associated with P0 are cube roots of

unity. We actually find the complete structure of P0.

In case of unitarily invariant norms on Mm,n(C), the structure of generalized 3-circular

projections depends on the isometry group and on λ1 +λ2. Let U(X) denotes the set of all

unitary operators on a Banach space X. It is known that (see Theorem 0.0.29) if m 6= n,

then any isometry T is of the form T (A) = UAV where U ∈ U(Cm) and V ∈ U(Cn). If

m = n, then an isometry T on Mn(C) has the form either T (A) = UAV or T (A) = UAtV

where U , V are unitaries in Mn(C) and At denotes the transpose of a matrix A.

We prove that if the isometry associated with a generalized 3-circular projection P0 is

of the form A 7−→ UAV for some U ∈ U(Cm) and V ∈ U(Cn) and λ1 + λ2 = −1, then

P0 has the form A 7−→ R0AS0 + R1AS1 + R2AS2, where Ri = R∗i = R2
i in Mm(C) and

Si = S∗i = S2
i in Mn(C), i = 0, 1, 2.

If the isometry associated with P0 has the same form as above and λ1 + λ2 6= −1, then

one of the following holds:

(a) P0 is a bi-circular projection,

(b) P0(A) = λ1A
2(λ1−1)

+ UAV
1−λ21

+ λ1UqAV q

2(1+λ1)
,
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(c) P0(A) =
∑p−1

i=0 RiASi for some Ri = R∗i = R2
i in Mm(C) and Si = S∗i = S2

i in Mn(C),

i = 0, 1, . . . , p− 1, and some p > 3.

If the isometry associated with P0 has the form A 7−→ UAtV , then we get similar

results as above.

The structures of generalized 3-circular projections for unitary congruence invariant

norms will be also of similar nature.

The results for symmetric norms on Cn and on Mm,n(C) are from [3].

In Chapter 5 we discuss questions related to algebraic reflexivity of the set of GBPs and

the set of isometries on spaces of Banach space valued continuous functions on a compact

Hausdorff space.

The notion of algebraic reflexivity was first introduced in [17].

Definition 0.0.3. Let X be a Banach space and S a subset of B(X). The algebraic closure

Sa of S is defined to be the set

{T ∈ B(X) : ∀ x ∈ X, ∃ Tx ∈ S such that T (x) = Tx(x)}.

S is said to be algebraically reflexive if S = Sa.

Algebraic reflexivity in general and on certain class of isometries were studied by many

authors, see for instance [12, 13, 14, 17, 20, 23, 29, 30, 31]. Lecture Notes by Molnar [28]

gives a very comprehensive account of this theory.

For a Banach space X, let Gn(X) = {T ∈ G(X) : T n = I}. In [14], the authors proved

that for a compact Hausdorff space Ω, if G(C(Ω)) is algebraically reflexive, then G2(C(Ω))

is also algebraically reflexive. We prove this result for vector valued continuous functions

and for any n ≥ 2.

The algebraic reflexivity of the set of generalized 3-circular projections on C(Ω, X) is

still open.

Remark 0.0.4. The techniques used to describe generalized 3-circular projections in Chap-

ter 3 and Chapter 4 can be applied to describe generalized n-circular projections as well,
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n > 3. However, it is evident from the proofs that the number of cases occurring becomes

increasingly large and difficult to handle. It seems that one needs some other approach to

deal with such problems for general n.

Notation and Preliminaries

In this section, we introduce some notation and recall some definitions and results that

will be used throughout this thesis.

Throughout this thesis we will assume X to be a complex Banach space. We will denote

by T, the unit circle in the complex plane.

We begin by recalling the definition of generalized n-circular projection.

Definition 0.0.5. A projection P0 on X is said to be a generalized n-circular projection,

n ≥ 2, if there exist λ1, λ2, . . . , λn−1 ∈ T \ {1}, λi, i = 1, 2, . . . , n − 1 which are of finite

order and projections P0, P1, . . . , Pn−1 on X such that

(a) λi 6= λj for i 6= j,

(b) P0 ⊕ P1 ⊕ · · · ⊕ Pn−1 = I,

(c) P0 + λ1P1 + · · ·+ λn−1Pn−1 is a surjective isometry.

Let P0 be a generalized n-circular projection, that is, P0 + λ1P1 + · · ·+ λn−1Pn−1 = T

for some surjective isometry T and λi, Pi are as in Definition 0.0.5, i = 1, 2, . . . , n− 1.

Suppose that λm = λn for some m,n then we see that

T = P0 + λ1P1 + · · ·+ λm(Pm + Pn) + · · ·+ λn−1Pn−1.

As (Pm+Pn) is a projection, we conclude that P0 is a generalized (n−1)-circular projection.

Similarly, if λm = −λn, then (Pm − Pn) is not a projection but (Pm − Pn)2 = Pm + Pn

is. Therefore, we have

T = P0 + λ1P1 + · · ·+ λm(Pm − Pn) + · · ·+ λn−1Pn−1.

This implies that

T 2 = P0 + λ2
1P1 + · · ·+ λ2

m(Pm + Pn) + · · ·+ λ2
n−1Pn−1.
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Since T 2 is an isometry, we conclude that P0 is a generalized (n − 1)-circular projection.

So, we define the following.

Definition 0.0.6. A generalized n-circular projection P0 is called proper if it is not a

generalized (n− 1)-circular projection.

Botelho in [9] introduced the notion of generalized n-circular projection as follows:

A projection P on X is said to be a generalized n-circular projection if there exists a

surjective isometry T of order n such that

P =
I + T + · · ·+ T n−1

n
.

Remark 0.0.7. Let T ∈ G(X) such that T n = I and P = I+T+···+Tn−1

n
. Then P is a

generalized n-circular projection in the sense of Definition 0.0.5.

To see this, we first note that P is a projection. Let λ0 = 1, λ1, . . . , λn−1 be the n

distinct roots of identity. For i = 1, 2, . . . , n− 1, we define

Pi =
I + λiT + · · ·+ λi

n−1
T n−1

n
.

Then each Pi is a projection, P0⊕P1⊕· · ·⊕Pn−1 = I and P0 +λ1P1 + · · ·+λn−1Pn−1 = T .

Definition 0.0.8. A projection P on a Banach space X is said to be bi-circular projection

if P + λ(I − P ) is a surjective isometry, for all λ ∈ T.

Definition 0.0.9. A projection on a Banach space X is said to be generalized bi-circular

projection if there exists a λ ∈ T \ {1} such that P + λ(I − P ) is a surjective isometry.

Generalized bi-circular projections are not necessarily Hermitian. If P is a GBP, then

so is I − P .

Remark 0.0.10. We note that in Definition 0.0.9, it is not necessary to assume that

P + λ(I − P ) is surjective. It follows that this isometry is always surjective. To see this,

let x ∈ X and y = Px+ 1
λ
(I−P )x. Then we have (P +λ(I−P ))(y) = Px+(I−P )x = x.
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Theorem 0.0.11. [26, Theorem 1] Let X be a complex Banach space and P a projection

on X. Suppose that P + λ(I − P ) is an isometry. If λ is of infinite order in T, then P is

Hermitian.

Definition 0.0.12. Let P be a generalized bi-circular projection on X. The multiplicative

group associated with P is defined to be the set

ΛP = {λ ∈ T : P + λ(I − P ) is an isometry}.

This set is a group under multiplication.

The relation between finite order operators and projections is given in the next theorem.

Theorem 0.0.13. Let X be a Banach space and T an operator of order n. Then there

exist pairwise orthogonal projections Pi, i = 0, 1, . . . , n− 1 such that T = P0 +λ1P1 + · · ·+

λn−1Pn−1; where λ1, . . . , λn−1 are (n− 1) roots of unity.

The proof follows from [36, Theorem 5.9-E].

We denote by C(Ω, X), the space of X-valued continuous functions on compact Haus-

dorff space Ω while C0(Ω, X) denotes the space of X-valued continuous functions on a

locally compact Hausdorff space Ω which vanish at infinity. Both C(Ω, X) and C0(Ω, X)

are equipped with the supremum norm, that is, ‖f‖∞ = supω∈Ω ‖f(ω)‖. If X = C, the

above spaces are denoted by C(Ω) and C0(Ω) respectively.

We denote by U(X) and G(X) the group of unitary operators and surjective linear

isometries on X respectively.

Theorem 0.0.14. [4, Theorem 7.1] Let Ω be a locally compact Hausdorff space. If T :

C0(Ω) −→ C0(Ω) is a surjective isometry, then there exist a homeomorphism φ : Ω −→ Ω

and a continuous map u : Ω −→ T such that

Tf(ω) = u(ω)f(φ(ω)), ∀ f ∈ C0(Ω), ω ∈ Ω.

For the vector-valued version of the above theorem we recall the notion of a centralizer

of a Banach space, see [18, Chapter I].

x



Definition 0.0.15. Let T be a bounded linear operator on a Banach space X.

(i) The operator T is called a multiplier of X if for every element p ∈ ext(BX∗), there

exists aT (p) ∈ C such that T ∗p = aT (p)p. The collection of all multipliers is denoted

by Mult(X).

(ii) The centralizer of X is defined as

Z(X) = {T ∈Mult(X) : ∃ T ∈Mult(X) such that aT (p) = aT (p), ∀ p ∈ ext(BX∗)}.

Definition 0.0.16. A Banach space X is said to have trivial centralizer if the dimension

of Z(X) is equal to 1; that is, if the only elements in the centralizer are scalar multiples of

the identity operator I. Obviously, this is true if X is itself the scalar field.

Theorem 0.0.17. [4, Theorem 8.10] Let Ω be a locally compact Hausdorff space and X

a Banach with trivial centralizer. If T : C0(Ω, X) −→ C0(Ω, X) is a surjective isometry,

then there exist a homeomorphism φ : Ω −→ Ω and a map u : Ω −→ G(X), continuous

with respect to strong operator topology of B(X), such that

Tf(ω) = uω(f(φ(ω))), ∀ f ∈ C0(Ω), ω ∈ Ω.

For simplicity, we denote u(ω) by uω.

Definition 0.0.18. [4, Definition 8.2] A Banach space X is said to have the strong

Banach-Stone property if it satisfies the condition in Theorem 0.0.17.

It is known that strictly convex spaces have trivial centralizer. In particular, they have

the strong Banach-Stone property.

The following theorem describes GBPs on C(Ω, X).

Theorem 0.0.19. [11, Theorem 2.1] If Ω is a connected compact Hausdorff space and

X has the strong Banach-Stone property, then Q is a generalized bi-circular projection on

C(Ω, X) if and only if one of the following statements holds:
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1. There exist a nontrivial homeomorphism φ : Ω −→ Ω with φ2 = Id and a continuous

function u : Ω −→ G(X) with uω ◦ uφ(ω) = Id such that

Q(f)(ω) =
1

2
[f(ω) + uω(f ◦ φ(ω))],

for every ω ∈ Ω.

2. There exists a generalized bi-circular projection on X, Pω, such that Q(f)(ω) =

Pω(f(ω)), for each ω ∈ Ω.

Definition 0.0.20. A projection P on a Banach space X is said to be an L∞ projection

if for every x ∈ X

‖x‖ = max{‖Px‖, ‖x− Px‖}.

X has trivial L∞-structure if 0 and I are the only L∞ projections.

Theorem 0.0.21. [15, Theorem 2.5] Let (Xn) be a sequence of complex Banach spaces

such that every Xn has trivial L∞-structure. T is a surjective isometry of
⊕

c0
Xn if and

only if there exist a permutation π of N and a sequence of isometric operators Unπ(n) such

that

(Tx)n = Unπ(n)xπ(n) for each x = (xn) ∈
⊕
c0

Xn.

Moreover, the space Xπ(n)
∼= Xn.

We now recall some definitions and remarks which will be used in Chapter 4.

Definition 0.0.22. Let X be a Banach space and G a closed subgroup of G(X). A norm

‖ · ‖ on X is said to be G-invariant if

‖g(x)‖ = ‖x‖ ∀ g ∈ G, x ∈ X.

Trivially, multiple of the inner product norm on Cn is G-invariant.

The following theorem shows that GBPs on finite dimensional Banach spaces are or-

thogonal projections.
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Theorem 0.0.23. [16, Proposition 2.1] Let X be an n-dimensional inner product space

and ‖ · ‖ a multiple of the norm induced by the inner product. Suppose P : X −→ X is a

non-trivial linear projection and λ ∈ T \ {1}. The following conditions are equivalent:

(i) P + λ(I − P ) is an isometry,

(ii) P is an orthogonal projection, that is, there exists an orthonormal basis {e1, . . . , en}

for X such that P (ej) = λjej where λj ∈ {0, 1} for all j = 1, . . . , n.

Remark 0.0.24. In the sequel, we will prove our results for G-invariant norms which are

not multiple of the inner product norm.

Definition 0.0.25. A square matrix P is called a permutation matrix if exactly one entry

in each row and column is equal to 1, and all other entries are 0.

Every permutation matrix corresponds to a unique permutation. A permutation matrix

will always be in the form 
ea1

ea2
...

ean


where eaj denotes a row vector of length n with 1 in the jth position and 0 in every other

position and  1 2 · · · n

a1 a1 · · · an


is the corresponding permutation form of the permutation matrix.

Definition 0.0.26. A norm ‖ · ‖ on Cn is called symmetric if ‖Πx‖ = ‖x‖ for all x ∈ Cn

and all permutation matrices Π.

Let G be the group of all generalized permutation matrices, that is, matrices of the

form DP where D is a diagonal matrix with all its elements of unit modulus and P is a

permutation matrix.

The isometry group of a given symmetric norm is characterized in the following theorem.
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Theorem 0.0.27. [24, Theorem 2.5] The isometry group of a symmetric norm on Cn is

G.

Definition 0.0.28. A norm ‖·‖ on Mm,n(C) is called unitarily invariant if ‖UAV ‖ = ‖A‖,

for all A ∈Mm,n(C) and all unitary matrices U and V in Mm(C) and Mn(C) respectively.

Let G be the group of all linear operators on Mm,n(C) of the form A 7−→ UAV for

some fixed unitary U ∈Mm(C) and V ∈Mn(C).

We denote by τ the transposition operator on Mn(C), that is, τ(A) = At.

The isometry group of a unitarily invariant norm is described in the following theorem

by Li.

Theorem 0.0.29. [24, Theorem 2.4] The isometry group of a unitarily invariant norm

‖ · ‖ on Mm,n(C) must be of one of the following forms:

(a) If m 6= n, G(X) = G;

(b) If m = n, G(X) = 〈G, τ〉.

The following proposition will be used in Chapter 4.

Proposition 0.0.30. [16, Proposition 4.1] Let ‖ · ‖ be a unitarily invariant norm on

Mm,n(C) not equal to a multiple of the Frobenius norm, and K the isometry group of ‖ · ‖.

Suppose P : Mm,n(C) −→Mm,n(C) is a non-trivial linear projection and λ ∈ T\{1}. Then

P + λ(I − P ) ∈ K if and only if one of the following holds:

(a) There exists R ∈ Mm(C) with R = R∗ = R2 such that P has the form A 7−→ RA

or there exists S ∈Mn(C) with S = S∗ = S2 such that P has the form A 7−→ AS.

(b) λ = −1, and there exist R = R∗ = R2 in Mm(C) and S = S∗ = S2 in Mn(C) such

that P has the form A 7−→ RAS + (Im −R)A(In − S).

(c) m = n, λ = −1, and there is U ∈ U(Cn) such that P or P has the form A 7−→

(A+ UAtA)/2.
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Definition 0.0.31. A norm ‖ · ‖ on Sn(C), the space of all n×n symmetric matrices over

C, is called unitary congruence invariant if ‖U tAU‖ = ‖A‖ for all A ∈ Sn(C), where U is

an any unitary matrix in Mn(C).

Let G be the group of all linear operators on Sn(C) of the form A 7−→ U tAU for some

fixed unitary U ∈Mn(C).

The isometry group of a unitary congruence invariant norm on Sn(C) is described in

the following theorem.

Theorem 0.0.32. [24, Theorem 2.8] The isometry group of a unitary congruence invari-

ant norm on Sn(C) which is not a multiple of the Frobenius norm is G.

The following proposition will be used in Chapter 4.

Proposition 0.0.33. [16, Proposition 5.1] Let ‖ · ‖ be a unitary congruence invariant

norm on Sn(C), which is not a multiple of the Frobenius norm, and K the isometry group

of ‖ · ‖. Suppose P : Sn(C) −→ Sn(C) is a non-trivial linear projection and λ ∈ T \ {1}.

Then P + λ(I − P ) ∈ K if and only if λ = −1 and there exists R = R∗ = R2 in Mn(C)

such that P or P has the form A 7−→ RtAR + (I −Rt)A(I −R).

The next theorem gives sufficient condition regarding the algebraic reflexivity of the

set of isometric reflections on C(Ω).

Theorem 0.0.34. [14, Theorem 1] Let Ω be compact Hausdorff space. If G(C(Ω)) is

algebraically reflexive, then G2(C(Ω)) is also algebraically reflexive.

The following theorem gives conditions on X so that G(C(Ω, X)) is is algebraically

reflexive.

Theorem 0.0.35. [20, Theorem 7] Suppose Ω is a first countable compact Hausdorff space

and X a uniformly convex Banach space such that G(X) is algebraically reflexive . Then

G(C(Ω, X)) is algebraically reflexive.
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Statement of Theorems

In this section we give chapter-wise statement of all the main results proved in this thesis.

CHAPTER 2

Theorem 0.0.36. Let X be a Banach space. If P is a projection such that P +λ(I−P ) =

T , where λ ∈ T \ {1} and T is an isometry on X, then R = 2P − I belongs to the algebra

generated by T .

Theorem 0.0.37. Let P a bounded operator on a Banach space X. Let λ0, . . . , λk−1

be nonzero complex numbers and P =
∑k−1

i=0 λi T
i, where T is an operator of order k.

Then P is a projection if and only if λ = (λ0, λ1, . . . , λk−1) is the IDFT of δS, for some

S ⊆ {0, . . . , k − 1}.

Theorem 0.0.38. Let Ω be a locally compact Hausdorff space and X a Banach space with

trivial centralizer. Let P be a GBP on C0(Ω, X). Then one and only one of the following

assertions holds.

(a) P = I+T
2

, where T is an isometry on C0(Ω, X).

(b) Pf(ω) = Pω(f(ω)), where Pω is a generalized bi-circular projection on X.

CHAPTER 3

Theorem 0.0.39. Let Ω be a compact connected Hausdorff space and P0 a proper gener-

alized 3-circular projection on C(Ω). Then there exists a surjective isometry T on C(Ω)

such that

(a) P0 + ωP1 + ω2P2 = T , where P1 and P2 are as in Definition 0.0.5 and ω is a cube

root of unity,

(b) T 3 = I.

Hence, P0 = I+T+T 2

3
.
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Theorem 0.0.40. Let Ω be a compact connected Hausdorff space. Let P be a projection

on C(Ω) such that P = α1T1 + α2T2 + α3T3, where T1, T2, T3 are surjective isometries of

C(Ω), αi > 0, i = 1, 2, 3 and α1 + α2 + α3 = 1. Then either,

(a) αi = 1
2

for some i = 1, 2, 3 αj + αk = 1
2
, j, k 6= i and Tj = Tk or

(b) α1 = α2 = α3 = 1
3

and T1, T2, T3 are distinct surjective isometries. Moreover,

in this case there exists a surjective isometry T on C(Ω) such that T 3 = I and

P = I+T+T 2

3
.

CHAPTER 4

Theorem 0.0.41. Let ‖ · ‖ be a symmetric norm on Cn and P0 a generalized 3-circular

projection. Then one and only one of the following assertions holds:

(a) P0 is a bi-circular projection.

(b) There exist m ≥ 0, k ≥ 1, projections P0,i, i = 0, . . . , k such that P0 is permuta-

tionally similar to P0,1 ⊕ P0,2 ⊕ · · · ⊕ P0,k ⊕ P0,0, where

P0,i =
1

3


1 di1 di1di2

di2di3 1 di2

di3 di1di3 1

 and P0,0 = diag(p1, p2, . . . , pm)

with pj ∈ {0, 1} for all j = 1, 2, . . . ,m and di1di2di3 = 1.

Theorem 0.0.42. Let ‖ ·‖ be a unitarily invariant norm on Mm,n(C) and P0 a generalized

3-circular projection such that the isometry associated with it is of the form A 7−→ UAV

for some U ∈ U(Cm) and V ∈ U(Cn). Suppose λ1 + λ2 = −1, then there exist Ri =

R∗i = R2
i in Mm(C) and Si = S∗i = S2

i in Mn(C), i = 0, 1, 2 such that P0 has the form

A 7−→ R0AS0 +R1AS1 +R2AS2.
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Theorem 0.0.43. Let ‖ ·‖ be a unitarily invariant norm on Mm,n(C) and P0 a generalized

3-circular projection such that the isometry associated with P0 is of the form A 7−→ UAV

for some U ∈ U(Cm) and V ∈ U(Cn). Suppose λ1 + λ2 6= −1, then one and only one of

following assertions holds:

(a) There exists R ∈Mn(C) with R = R∗ = R2 such that P0(A) = AR, or there exists

S ∈Mm(C) with S = S∗ = S2 such that P0(A) = SA.

In both cases, P0 is a bi-circular projection.

(b) λ2
i = λj, i, j = 1, 2 and i 6= j;

(b1) λ1 is of order p and λ2 is of order q with p = 2q. In this case we have one of

the following conditions:

(i) P0 is a bi-circular projection.

(ii) P1 is generalized bi-circular projection and (λ1)p/2 = (λ2)q/2 = −1. Moreover,

P0 has the form

A 7−→ λ1A

2(λ1 − 1)
+

UAV

1− λ2
1

+
λ1U

qAV q

2(1 + λ1)
.

(b2) λi =
√
λj and λ1, λ2 are of order p, where p is an odd integer greater or equal

to 5. Moreover, there exist Ri = R∗i = R2
i in Mm(C) and Si = S∗i = S2

i in Mn(C)

such that

P0(A) =

p−1∑
i=0

RiASi,

where i = 0, 1, . . . , p− 1.

(c) λ1λ2 = 1 and P0 will have the same form as in (b2).

Theorem 0.0.44. Let ‖ · ‖ be a unitarily invariant norm on Mn(C) and P0 a generalized

3-circular projection such that the isometry associated with P0 is of the form A 7−→ UAtV

for some U, V ∈ U(Cn). Then one and only one of the following assertions holds:

(a) λ2
1+λ2

2 = −1 and there exist Ri = R∗i = R2
i and Si = S∗i = S2

i in Mn(C), i = 0, 1, 2

such that P0 has the form A 7−→ R0AS0 +R1AS1 +R2AS2.
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(b) λ4
i = λ2

j , i, j = 1, 2 and i 6= j;

(b1) λ2
1 is of order p and λ2

2 is of order q with p = 2q. In this case, we have one of

the following conditions:

(i) P0 is a bi-circular projection.

(ii) P1 is generalized bi-circular projection and λp1 = λq2 = −1. Moreover, P0 has the

form

A 7−→ λ2
1A

2(λ2
1 − 1)

+
UV tAU tV

1− λ4
1

+
λ2

1(UV t)qA(U tV )q

2(1 + λ2
1)

.

(b2) λ2
i = λj; λ

2
1 and λ2

2 are of order p, where p is an odd integer greater or equal to

5. Moreover, there exist Ri = R∗i = R2
i and Si = S∗i = S2

i in Mn(C) such that

P0(A) =

p−1∑
i=0

RiASi,

where i = 0, 1, . . . , p− 1.

Theorem 0.0.45. Let ‖ · ‖ be a unitary congruence invariant norm on Sn(C) and P0 a

generalized 3-circular projection. Then there exists U ∈ U(Cn) such that one and only one

of the following assertions holds:

(a) U has three distinct eigenvalues. In this case, λ1+λ2 = −1. Moreover, there exists

Ri = R∗i = R2
i in Mn(C) such that P0 has the form A 7−→ Rt

0AR0 +Rt
1AR2 +Rt

2AR1.

(b) U has two distinct eigenvalues. In this case, one and only one of the following

occurs:

(b1) λi =
√
λj, i, j = 1, 2 and i 6= j and λi’s are of order p, where p is an odd

integer greater or equal to 3. Moreover, there exist Ri = R∗i = R2
i and Si = S∗i = S2

i

in Mn(C) such that

P0(A) =

p−1∑
i=0

RiASi,

where i = 0, 1, . . . , p− 1.

(b2) λ1λ2 = 1 and P0 will have the same form as in (b1).
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CHAPTER 5

Theorem 0.0.46. Let Ω be a locally compact Hausdorff space and X a Banach space

with trivial centralizer. If G(C0(Ω, X)) is algebraically reflexive, then Gn(C0(Ω, X)) is

algebraically reflexive.

Corollary 0.0.47. Let Ω be a first countable compact Hausdorff space and X a uniformly

convex Banach space such that G(X) is algebraically reflexive. Furthermore, assume that X

does not have any generalized bi-circular projections. Then the set of generalized bi-circular

projections on C(Ω, X) is algebraically reflexive.
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1
Introduction

In the first part of this chapter, we explain the background and the main theme of this

thesis and provide a chapter-wise summary of its main results. In the second part, we

introduce some notation and preliminaries that will be used throughout this thesis.

1.1 Introduction

Projections are basic building blocks in understanding the structure of a Banach space.

However, constructing a projection with desired properties often turns out to be a daunting

task. By a projection we always mean a bounded linear operator P such that P 2 = P .

We say a projection P is contractive (respectively, bi-contractive) if ‖P‖ = 1 (respectively,

‖P‖ = ‖I − P‖ = 1).

Attempt to describe the structure of contractive or bi-contractive projections on classi-

cal Banach spaces like C0(Ω) or Lp and on other spaces of operators, specially C∗- algebras,

had received lot of attention in past as well as in recent time. The seminal work by Lin-

denstrauss [27] and the book [22] by H. E. Lacey are two classical references for the study

of contractive projections.

In this thesis we propose to study a class of projections which are related to the isome-
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Chapter 1. Introduction

tries. To motivate, consider an isometry T on a Banach space X such that T n = I, for

some n ≥ 2. Then it is immediate that P0 = I+T+···+Tn−1

n
is a norm one projection on

X. Also, note that (see Theorem 1.2.9 in the next section) T can always be written as

T = P0 + λ1P1 + · · · + λn−1Pn−1, where λ1, . . . , λn−1 are (n − 1) roots of unity and Pi,

i = 1, . . . , n − 1 are corresponding eigen projections for T . Taking cue from above we

define the following.

Definition 1.1.1. Let X be a complex Banach space. A projection P0 on X is said to be

n-circular projection, n ≥ 2, if there exist projections P1, P2, . . . , Pn−1 on X such that

(a) P0 ⊕ P1 ⊕ · · · ⊕ Pn−1 = I,

(b) P0 +λ1P1 + · · ·+λn−1Pn−1 is a surjective isometry for all λi ∈ T, i = 1, 2, . . . , n−1.

Definition 1.1.2. Let X be a complex Banach space. A projection P0 on X is said to

be a generalized n-circular projection, n ≥ 2, if there exist λ1, λ2, . . . , λn−1 ∈ T \ {1},

λi, i = 1, 2, . . . , n− 1 which are of finite order and projections P1, P2, . . . , Pn−1 on X such

that

(a) λi 6= λj for i 6= j,

(b) P0 ⊕ P1 ⊕ · · · ⊕ Pn−1 = I,

(c) P0 + λ1P1 + · · ·+ λn−1Pn−1 is a surjective isometry.

The case of n = 2 has received recent attention. A projection satisfying the condition

of Definition 1.1.1 for n = 2 is referred as bi-circular projection. Similarly a projection

satisfying the condition of Definition 1.1.2 for n = 2 is referred as generalized bi-circular

projection (henceforth GBP). Bi-circular projections were first studied by Stachó and Zalar

in [33, 34]. Their motivation to study these projections is from complex analysis, more

specifically from the study of Reinhardt domains (see [32, 34]). Jamison [19] showed

that bi-circular projections are Hermitian. Let B(X) denote the set of all bounded linear

operators on X. An operator T ∈ B(X) is said to be Hermitian if eiθT is an isometry for

every θ ∈ R. Hermitian operators on various complex Banach spaces were investigated

by many authors, see for example [5], [6], [7] and [15]. As a consequence of Jamison’s

2



1.1. Introduction

result, many results on bi-circular projections follow from previously established results on

Hermitian operators.

The notion of generalized bi-circular projection was introduced by Fošner, Ilǐsević and

Li in [16]. The description of generalized bi-circular projections for different Banach spaces

were studied in [9, 11, 14, 16, 26]. It was shown in [26] that GBPs are bi-contractive. P.

K. Lin in [26] proved that if P + λ(I −P ) is an isometry and λ is of infinite order, then P

is a bi-circular projection.

The central theme of the results which we prove in this thesis is to understand the

structures of GBPs and of generalized 3-circular projections in general, and in particular

classical spaces like C(Ω) and spaces of matrices. It turns out that these spaces are rich

with GBPs and generalized 3-circular projections.

It is quite clear from Definition 1.1.2 and the discussion presented above that the

descriptions of GBPs and generalized 3-circular projections depend on the isometries under

a given norm. We use results related to structures of the isometry groups on the above

spaces heavily in proving our results in subsequent chapters.

We now give a chapter-wise summary of the results proved in this thesis.

In Chapter 2, we prove several results concerning the representation of projections on

Banach spaces.

An operator T ∈ B(X) is of order k (a positive integer) if T k = I and T i 6= I for any

i < k. A reflection is an operator of order 2. An isometric reflection is both a reflection

and an isometry.

In [16], the authors show that a GBP on finite dimensional spaces with respect to various

G-invariant norms is equal to the average of the identity with an isometric reflection. This

result was further extended in [11] to many other spaces, for example C(Ω) and C(Ω, X).

In fact it is known that, see [25, Theorem 4.4], any bi-contractive projection on C(Ω) is

the average of identity and an isometric reflection. The same characterization was also

proved in [10] and [21] for GBPs on spaces of Lipschitz functions, and in [26] for Lp-spaces,

1 ≤ p <∞, p 6= 2.

This raises the question whether every GBP on a Banach space is equal to the average of

3



Chapter 1. Introduction

the identity operator with an isometric reflection. In other words, whether the λ associated

with a GBP is always −1. We answer this question negatively in this chapter. Further

we show that if P is a GBP on X, then it is equal to the average of the identity operator

and a reflection R, where R belongs to the algebra generated by the isometry associated

with P . If the λ associated with P is of even order then R is an isometry, otherwise it

may not be. We give an example of a P which is a GBP such that P = I+R
2

, and R is not

an isometry. We also give an example of a generalized 3-circular projection which is not a

GBP.

Let k be a positive integer and z = (z(0), . . . , z(k− 1)). We define the discrete Fourier

coefficient of z by ẑ(m) =
∑k−1

n=0 z(n)ρmn, where ρ = e−2πi/k. Then z is the inverse discrete

Fourier transform of ẑ, that is, z = IDFT (ẑ) (see [35]). If S is a subset of {0, . . . , k − 1},

we denote by δS the vector with components given by δ(i) = 1 for i ∈ S and δ(i) = 0

otherwise.

We prove the following result.

Let P ∈ B(X) such that P = λ0I + λ1T + λ2T
2 + · · · + λn−1T

n−1, where λi; i =

0, 1, . . . , n − 1 are nonzero complex numbers and T is an operator of order n. Then P

is a projection if and only if λ = (λ0, λ1, . . . , λn−1) is the IDFT of δS, for some S ⊆

{0, . . . , n− 1}.

In the last section of this chapter, we extend results proved by Botelho and Jamison

in [11] regarding the structure of GBPs on C(Ω, X), where Ω is a compact connected

Hausdorff space and X has the Strong Banach-Stone property. We also characterize GBPs

on c0-sums of Banach spaces.

The content of this chapter is entirely taken from [1].

In Chapter 3 we describe projections in the convex hull of 3-isometries in C(Ω).

If P is a proper projection on a Banach space X which can be written as P = αT1 +

(1 − α)T2 where Ti ∈ G(X), i = 1, 2 and α ∈ (0, 1), then α = 1
2
. To see this, since P is

proper, there exists 0 6= x ∈ X such that Px = 0. Thus, αT1x = − (1 − α)T2x. Since T1

and T2 are isometries, taking norms on both sides we get α = 1
2
. One can ask that if we

take P = α1T1 +α2T2 +α3T3, where αi > 0, Ti ∈ G(C(Ω)); i = 1, 2, 3 and α1 +α2 +α3 = 1,
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1.1. Introduction

whether αi = 1/3 ? In this chapter we prove that this is actually true in C(Ω).

Botelho, in [9], proved that if P is a projection which is in the convex combination of

two surjective isometries on C(Ω), then P is a GBP. Here, Ω is a compact Hausdorff space

We prove that a norm one projection in the convex hull of 3 surjective isometries on

C(Ω) is either a GBP or a generalized 3-circular projection. We show that, if P is a

projection on C(Ω) such that P = α1T1 + α2T2 + α3T3, where αi > 0, Ti ∈ G(C(Ω));

i = 1, 2, 3 and α1 + α2 + α3 = 1. Then either,

(a) αi = 1
2

for some i = 1, 2, 3 and Tj = Tk, j, k 6= i or

(b) α1 = α2 = α3 = 1
3

and T1, T2, T3 are distinct surjective isometries.

The surjective isometries on C(Ω) is given by the Banach-Stone Theorem (see Theorem

1.2.10). If T : C(Ω) −→ C(Ω) is a surjective isometry, then there exist a homeomorphism

φ : Ω −→ Ω and a continuous map u : Ω −→ T such that

Tf(ω) = u(ω)f(φ(ω)), ∀ f ∈ C0(Ω), ω ∈ Ω.

Let P0 be a generalized 3-circular projection on X. Then as in Definition 1.1.2, we will

refer to T and λ1, λ2, the isometry and λ1, λ2 associated with the generalized 3-circular

projection P0 respectively.

We also show that if P0 is a generalized 3-circular projection on C(Ω), then λ1, λ2

associated with P0 are cube roots of unity.

All the results of this chapter appeared in [2].

Chapter 4 gives complete description of generalized 3-circular projections on Cn with

a symmetric norm and on spaces of matrices with a unitarily invariant norm and unitary

congruence invariant norm.

The descriptions of GBPs on the above spaces with the said norms are given in [16].

A norm ‖·‖ on Cn is called symmetric if ‖Πx‖ = ‖x‖ for all x ∈ Cn and all permutation

matrices Π. A norm ‖ · ‖ on Mm,n(C) is called unitarily invariant if ‖UAV ‖ = ‖A‖, for

all A ∈ Mm,n(C) and all unitary matrices U and V in Mm(C) and Mn(C). A unitarily

invariant norm on Mm,n(C) is also referred as symmetric norms (see [8]). Let Sn(C) be

the set of all n × n symmetric matrices over C. A norm ‖ · ‖ on Sn(C) is called unitary

5



Chapter 1. Introduction

congruence invariant if ‖U tAU‖ = ‖A‖ for all A ∈ Sn(C), where U is any unitary matrix

in Mn(C).

If P0 is a generalized 3-circular projection Cn with a symmetric norm, then we show

that P0 is either a bi-circular projection or λ1, λ2 associated with P0 are cube roots of

unity. We actually find the complete structure of P0.

In case of unitarily invariant norms on Mm,n(C), the structure of generalized 3-circular

projections depends on the isometry group and on λ1 + λ2. Let U(X) denote the set of all

unitary operators on a Banach space X. It is known that (see Theorem 1.2.25) if m 6= n,

then any isometry T is of the form T (A) = UAV where U ∈ U(Cm) and V ∈ U(Cn). If

m = n, then an isometry T on Mn(C) has the form either T (A) = UAV or T (A) = UAtV

where U , V are unitaries in Mn(C) and At denotes the transpose of a matrix A.

We prove that if the isometry associated with a generalized 3-circular projection P0 is

of the form A 7−→ UAV for some U ∈ U(Cm) and V ∈ U(Cn) and λ1 + λ2 = −1, then

P0 has the form A 7−→ R0AS0 + R1AS1 + R2AS2, where Ri = R∗i = R2
i in Mm(C) and

Si = S∗i = S2
i in Mn(C), i = 0, 1, 2.

If the isometry associated with P0 has the same form as above and λ1 + λ2 6= −1, then

one of the following holds:

(a) P0 is a bi-circular projection,

(b) P0(A) = λ1A
2(λ1−1)

+ UAV
1−λ21

+ λ1UqAV q

2(1+λ1)
,

(c) P0(A) =
∑p−1

i=0 RiASi for some Ri = R∗i = R2
i in Mm(C) and Si = S∗i = S2

i in Mn(C),

i = 0, 1, . . . , p− 1, and some p > 3.

If the isometry associated with P0 has the form A 7−→ UAtV , then we get similar

results as above.

The structures of generalized 3-circular projections for unitary congruence invariant

norms will be also of similar nature.

The results for symmetric norms on Cn and on Mm,n(C) are from [3].

In Chapter 5 we discuss questions related to algebraic reflexivity of the set of GBPs and

the set of isometries on spaces of Banach space valued continuous functions on a compact

6



1.2. Notation and Preliminaries

Hausdorff space.

The notion of algebraic reflexivity was first introduced in [17].

Definition 1.1.3. Let X be a Banach space and S a subset of B(X). The algebraic closure

Sa of S is defined to be the set

{T ∈ B(X) : ∀ x ∈ X, ∃ Tx ∈ S such that T (x) = Tx(x)}.

S is said to be algebraically reflexive if S = Sa.

Algebraic reflexivity in general and on certain class of isometries were studied by many

authors, see for instance [12, 13, 14, 17, 20, 23, 29, 30, 31]. Lecture Notes by Molnar [28]

gives a very comprehensive account of this theory.

For a Banach space X, let Gn(X) = {T ∈ G(X) : T n = I}. In [14], the authors proved

that for a compact Hausdorff space Ω, if G(C(Ω)) is algebraically reflexive, then G2(C(Ω))

is also algebraically reflexive. We prove this result for vector valued continuous functions

and for any n ≥ 2.

The algebraic reflexivity of the set of generalized 3-circular projections on C(Ω, X) is

still open.

Remark 1.1.4. The techniques used to describe generalized 3-circular projections in Chap-

ter 3 and Chapter 4 can be applied to describe generalized n-circular projections as well,

n > 3. However, it is evident from the proofs that the number of cases occurring becomes

increasingly large and difficult to handle. It seems that one needs some other approach to

deal with such problems for general n.

1.2 Notation and Preliminaries

In this section, we introduce some notation and recall some definitions and results that

will be used throughout this thesis.

Throughout this thesis we will assume X to be a complex Banach space. We will denote

by T, the unit circle in the complex plane.

We begin by recalling Definition 1.1.2.

7



Chapter 1. Introduction

Definition 1.2.1. A projection P0 on X is said to be a generalized n-circular projection,

n ≥ 2, if there exist λ1, λ2, . . . , λn−1 ∈ T \ {1}, λi, i = 1, 2, . . . , n − 1 which are of finite

order and projections P0, P1, . . . , Pn−1 on X such that

(a) λi 6= λj for i 6= j,

(b) P0 ⊕ P1 ⊕ · · · ⊕ Pn−1 = I,

(c) P0 + λ1P1 + · · ·+ λn−1Pn−1 is a surjective isometry.

Let P0 be a generalized n-circular projection, that is, P0 + λ1P1 + · · ·+ λn−1Pn−1 = T

for some surjective isometry T and λi, Pi are as in Definition 1.2.1, i = 1, 2, . . . , n− 1.

Suppose that λm = λn for some m,n then we see that

T = P0 + λ1P1 + · · ·+ λm(Pm + Pn) + · · ·+ λn−1Pn−1.

As (Pm+Pn) is a projection, we conclude that P0 is a generalized (n−1)-circular projection.

Similarly, if λm = −λn, then (Pm − Pn) is not a projection but (Pm − Pn)2 = Pm + Pn

is. Therefore, we have

T = P0 + λ1P1 + · · ·+ λm(Pm − Pn) + · · ·+ λn−1Pn−1.

This implies that

T 2 = P0 + λ2
1P1 + · · ·+ λ2

m(Pm + Pn) + · · ·+ λ2
n−1Pn−1.

Since T 2 is an isometry, we conclude that P0 is a generalized (n − 1)-circular projection.

So, we define the following.

Definition 1.2.2. A generalized n-circular projection P0 is called proper if it is not a

generalized (n− 1)-circular projection.

Botelho in [9] introduced the notion of generalized n-circular projection as follows:

A projection P on X is said to be a generalized n-circular projection if there exists a

surjective isometry T of order n such that

P =
I + T + · · ·+ T n−1

n
.
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1.2. Notation and Preliminaries

Remark 1.2.3. Let T ∈ G(X) such that T n = I and P = I+T+···+Tn−1

n
. Then P is a

generalized n-circular projection in the sense of Definition 1.2.1.

To see this, we first note that P is a projection. Let λ0 = 1, λ1, . . . , λn−1 be the n

distinct roots of identity. For i = 1, 2, . . . , n− 1, we define

Pi =
I + λiT + · · ·+ λi

n−1
T n−1

n
.

Then each Pi is a projection, P0⊕P1⊕· · ·⊕Pn−1 = I and P0 +λ1P1 + · · ·+λn−1Pn−1 = T .

Definition 1.2.4. A projection P on a Banach space X is said to be bi-circular projection

if P + λ(I − P ) is a surjective isometry, for all λ ∈ T.

Definition 1.2.5. A projection on a Banach space X is said to be generalized bi-circular

projection if there exists a λ ∈ T \ {1} such that P + λ(I − P ) is a surjective isometry.

Generalized bi-circular projections are not necessarily Hermitian. If P is a GBP, then

so is I − P .

Remark 1.2.6. We note that in Definition 1.2.5, it is not necessary to assume that P +

λ(I − P ) is surjective. It follows that this isometry is always surjective. To see this, let

x ∈ X and y = Px+ 1
λ
(I − P )x. Then we have (P + λ(I − P ))(y) = Px+ (I − P )x = x.

Theorem 1.2.7. [26, Theorem 1] Let X be a complex Banach space and P a projection

on X. Suppose that P + λ(I − P ) is an isometry. If λ is of infinite order in T, then P is

Hermitian.

Definition 1.2.8. Let P be a generalized bi-circular projection on X. The multiplicative

group associated with P is defined to be the set

ΛP = {λ ∈ T : P + λ(I − P ) is an isometry}.

This set is a group under multiplication.

The relation between finite order operators and projections is given in the next theorem.
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Theorem 1.2.9. Let X be a Banach space and T an operator of order n. Then there exist

pairwise orthogonal projections Pi, i = 0, 1, . . . , n − 1 such that T = P0 + λ1P1 + · · · +

λn−1Pn−1; where λ1, . . . , λn−1 are (n− 1) roots of unity.

The proof follows from [36, Theorem 5.9-E].

We denote by C(Ω, X), the space of X-valued continuous functions on compact Haus-

dorff space Ω while C0(Ω, X) denotes the space of X-valued continuous functions on a

locally compact Hausdorff space Ω which vanish at infinity. Both C(Ω, X) and C0(Ω, X)

are equipped with the supremum norm, that is, ‖f‖∞ = supω∈Ω ‖f(ω)‖. If X = C, the

above spaces are denoted by C(Ω) and C0(Ω) respectively.

We denote by U(X) and G(X) the group of unitary operators and surjective linear

isometries on X respectively.

Theorem 1.2.10. [4, Theorem 7.1] Let Ω be a locally compact Hausdorff space. If T :

C0(Ω) −→ C0(Ω) is a surjective isometry, then there exist a homeomorphism φ : Ω −→ Ω

and a continuous map u : Ω −→ T such that

Tf(ω) = u(ω)f(φ(ω)), ∀ f ∈ C0(Ω), ω ∈ Ω.

For the vector-valued version of the above theorem we recall the notion of a centralizer

of a Banach space, see [18, Chapter I].

Definition 1.2.11. Let T be a bounded linear operator on a Banach space X.

(i) The operator T is called a multiplier of X if for every element p ∈ ext(BX∗), there

exists aT (p) ∈ C such that T ∗p = aT (p)p. The collection of all multipliers is denoted

by Mult(X).

(ii) The centralizer of X is defined as

Z(X) = {T ∈Mult(X) : ∃ T ∈Mult(X) such that aT (p) = aT (p), ∀ p ∈ ext(BX∗)}.

Definition 1.2.12. A Banach space X is said to have trivial centralizer if the dimension

of Z(X) is equal to 1; that is, if the only elements in the centralizer are scalar multiples of

the identity operator I. Obviously, this is true if X is itself the scalar field.
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Theorem 1.2.13. [4, Theorem 8.10] Let Ω be a locally compact Hausdorff space and X

a Banach with trivial centralizer. If T : C0(Ω, X) −→ C0(Ω, X) is a surjective isometry,

then there exist a homeomorphism φ : Ω −→ Ω and a map u : Ω −→ G(X), continuous

with respect to the strong operator topology of B(X), such that

Tf(ω) = uω(f(φ(ω))), ∀ f ∈ C0(Ω), ω ∈ Ω.

For simplicity, we denote u(ω) by uω.

Definition 1.2.14. [4, Definition 8.2] A Banach space X is said to have the strong

Banach-Stone property if it satisfies the condition in Theorem 1.2.13.

It is known that strictly convex spaces have trivial centralizer. In particular, they have

the strong Banach-Stone property.

The following theorem describes GBPs on C(Ω, X).

Theorem 1.2.15. [11, Theorem 2.1] If Ω is a connected compact Hausdorff space and

X has the strong Banach-Stone property, then Q is a generalized bi-circular projection on

C(Ω, X) if and only if one of the following statements holds:

1. There exist a nontrivial homeomorphism φ : Ω −→ Ω with φ2 = Id and a continuous

function u : Ω −→ G(X) with uω ◦ uφ(ω) = Id such that

Q(f)(ω) =
1

2
[f(ω) + uω(f ◦ φ(ω))],

for every ω ∈ Ω.

2. There exists a generalized bi-circular projection on X, Pω, such that Q(f)(ω) =

Pω(f(ω)), for each ω ∈ Ω.

Definition 1.2.16. A projection P on a Banach space X is said to be an L∞ projection

if for every x ∈ X

‖x‖ = max{‖Px‖, ‖x− Px‖}.

X has trivial L∞-structure if 0 and I are the only L∞ projections.
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Theorem 1.2.17. [15, Theorem 2.5] Let (Xn) be a sequence of complex Banach spaces

such that every Xn has trivial L∞-structure. T is a surjective isometry of
⊕

c0
Xn if and

only if there exist a permutation π of N and a sequence of isometric operators Unπ(n) such

that

(Tx)n = Unπ(n)xπ(n) for each x = (xn) ∈
⊕
c0

Xn.

Moreover, the space Xπ(n)
∼= Xn.

We now recall some definitions and remarks which will be used in Chapter 4.

Definition 1.2.18. Let X be a Banach space and G a closed subgroup of G(X). A norm

‖ · ‖ on X is said to be G-invariant if

‖g(x)‖ = ‖x‖ ∀ g ∈ G, x ∈ X.

Trivially, multiple of the inner product norm on Cn is G-invariant.

The following theorem shows that GBPs on finite dimensional Banach spaces are or-

thogonal projections.

Theorem 1.2.19. [16, Proposition 2.1] Let X be an n-dimensional inner product space

and ‖ · ‖ a multiple of the norm induced by the inner product. Suppose P : X −→ X is a

non-trivial linear projection and λ ∈ T \ {1}. The following conditions are equivalent:

(i) P + λ(I − P ) is an isometry,

(ii) P is an orthogonal projection, that is, there exists an orthonormal basis {e1, . . . , en}

for X such that P (ej) = λjej where λj ∈ {0, 1} for all j = 1, . . . , n.

Remark 1.2.20. In the sequel, we will prove our results for G-invariant norms which are

not multiple of the inner product norm.

Definition 1.2.21. A square matrix P is called a permutation matrix if exactly one entry

in each row and column is equal to 1, and all other entries are 0.
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Every permutation matrix corresponds to a unique permutation. A permutation matrix

will always be in the form 
ea1

ea2
...

ean


where eaj denotes a row vector of length n with 1 in the jth position and 0 in every other

position and  1 2 · · · n

a1 a1 · · · an


is the corresponding permutation form of the permutation matrix.

Definition 1.2.22. A norm ‖ · ‖ on Cn is called symmetric if ‖Πx‖ = ‖x‖ for all x ∈ Cn

and all permutation matrices Π.

Let G be the group of all generalized permutation matrices, that is, matrices of the

form DP where D is a diagonal matrix with all its elements of unit modulus and P is a

permutation matrix.

The isometry group of a given symmetric norm is characterized in the following theorem.

Theorem 1.2.23. [24, Theorem 2.5] The isometry group of a symmetric norm on Cn is

G.

Definition 1.2.24. A norm ‖·‖ on Mm,n(C) is called unitarily invariant if ‖UAV ‖ = ‖A‖,

for all A ∈Mm,n(C) and all unitary matrices U and V in Mm(C) and Mn(C) respectively.

Let G be the group of all linear operators on Mm,n(C) of the form A 7−→ UAV for

some fixed unitary U ∈Mm(C) and V ∈Mn(C).

We denote by τ the transposition operator on Mn(C), that is, τ(A) = At.

The isometry group of a unitarily invariant norm is described in the following theorem

by Li.
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Theorem 1.2.25. [24, Theorem 2.4] The isometry group of a unitarily invariant norm

‖ · ‖ on Mm,n(C) must be of one of the following forms:

(a) If m 6= n, G(X) = G;

(b) If m = n, G(X) = 〈G, τ〉.

The following proposition will be used in Chapter 4.

Proposition 1.2.26. [16, Proposition 4.1] Let ‖ · ‖ be a unitarily invariant norm on

Mm,n(C) not equal to a multiple of the Frobenius norm, and K the isometry group of ‖ · ‖.

Suppose P : Mm,n(C) −→Mm,n(C) is a non-trivial linear projection and λ ∈ T\{1}. Then

P + λ(I − P ) ∈ K if and only if one of the following holds:

(a) There exists R ∈ Mm(C) with R = R∗ = R2 such that P has the form A 7−→ RA

or there exists S ∈Mn(C) with S = S∗ = S2 such that P has the form A 7−→ AS.

(b) λ = −1, and there exist R = R∗ = R2 in Mm(C) and S = S∗ = S2 in Mn(C) such

that P has the form A 7−→ RAS + (Im −R)A(In − S).

(c) m = n, λ = −1, and there is U ∈ U(Cn) such that P or P has the form A 7−→

(A+ UAtA)/2.

Definition 1.2.27. A norm ‖ · ‖ on Sn(C), the space of all n×n symmetric matrices over

C, is called unitary congruence invariant if ‖U tAU‖ = ‖A‖ for all A ∈ Sn(C), where U is

an any unitary matrix in Mn(C).

Let G be the group of all linear operators on Sn(C) of the form A 7−→ U tAU for some

fixed unitary U ∈Mn(C).

The isometry group of a unitary congruence invariant norm on Sn(C) is described in

the following theorem.

Theorem 1.2.28. [24, Theorem 2.8] The isometry group of a unitary congruence invari-

ant norm on Sn(C) which is not a multiple of the Frobenius norm is G.

The following proposition will be used in Chapter 4.
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Proposition 1.2.29. [16, Proposition 5.1] Let ‖ · ‖ be a unitary congruence invariant

norm on Sn(C), which is not a multiple of the Frobenius norm, and K the isometry group

of ‖ · ‖. Suppose P : Sn(C) −→ Sn(C) is a non-trivial linear projection and λ ∈ T \ {1}.

Then P + λ(I − P ) ∈ K if and only if λ = −1 and there exists R = R∗ = R2 in Mn(C)

such that P or P has the form A 7−→ RtAR + (I −Rt)A(I −R).

The next theorem gives sufficient condition regarding the algebraic reflexivity of the

set of isometric reflections on C(Ω).

Theorem 1.2.30. [14, Theorem 1] Let Ω be compact Hausdorff space. If G(C(Ω)) is

algebraically reflexive, then G2(C(Ω)) is also algebraically reflexive.

The following theorem gives conditions on X so that G(C(Ω, X)) is algebraically re-

flexive.

Theorem 1.2.31. [20, Theorem 7] Suppose Ω is a first countable compact Hausdorff space

and X a uniformly convex Banach space such that G(X) is algebraically reflexive . Then

G(C(Ω, X)) is algebraically reflexive.
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2
Representation of Generalized

Bi-circular Projections

In this chapter we prove several results concerning the representation of projections on

Banach spaces. We characterize projections written as combination of powers of a finite

order operator and relate those to generalized n-circular projections. We also characterize

generalized bi-circular projections on C0(Ω, X), with Ω not necessarily connected and X a

Banach space with trivial centralizer.

All the results of this chapter had appeared in [1].

2.1 A characterization of generalized bi-circular

projection

We recall from Definition 1.2.5 that a projection P on a Banach space X is said to be a

generalized bi-circular projection if there exists a λ ∈ T \ {1} such that P +λ(I −P ) is an

isometry on X.

We start with the following remark.
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Remark 2.1.1. Let P and R be operators on X such that P = I+R
2

. Then P is a projection

if and only if R is a reflection.

So, there is a bijection between the set of all reflections on X and the set of all projec-

tions. If P = I+R
2

, with R a reflection, then R is the identity on the range of P and −I on

the kernel of P .

Given a projection P on X, 2P − I is a reflection, and thus P can be represented as

the average of I with a reflection, that is, P = I+(2P−I)
2

. In particular, any generalized

bi-circular projection on X is average of the identity operator and a reflection. In the next

result we show that, if P is a GBP and T is the isometry associated with P , then 2P − I

belongs to the algebra generated by T .

Theorem 2.1.2. Let X be a Banach space. If P is a projection such that P+λ(I−P ) = T ,

where λ ∈ T \ {1} is of finite order and T is an isometry on X, then R = 2P − I belongs

to the algebra generated by T .

Proof. We consider the following two cases:

(a) Suppose that λ is of even order. Then for some positive integer k, we have λk = −1,

P + λk(I − P ) = T k and P + λ2k(I − P ) = I = T 2k. Consequently, P is represented

as the average of the identity with the isometric reflection T k.

(b) Suppose that the order of λ is 2k + 1, k ≥ 1. Therefore, we have

P + λj(I − P ) = T j, ∀ j = 1, . . . , 2k + 1. (2.1.1)

From Equation (2.1.1) we get

(2k + 1)P + (1 + λ+ λ2 + · · ·+ λ2k)(I − P ) = I + T + T 2 + · · ·+ T 2k.

Since 1 + λ+ λ2 + · · ·+ λ2k = 0, we obtain

(2k + 1)P = I + T + T 2 + · · ·+ T 2k. (2.1.2)
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Equation (2.1.2) implies that

P =
1

2k + 1

(
I + T + · · ·+ T 2k

)
=
I +R

2
,

with

R =
(1− 2k)I + 2T + · · ·+ 2T 2k

2k + 1
= 2P − I.

This completes the proof.

Corollary 2.1.3. Let X be a Banach space. If the order of the multiplicative group of a

generalized bi-circular projection P on X is even, then P is the average of the identity with

an isometric reflection.

Remark 2.1.4. If P is a projection such that P + λ(I − P ) = T , where λ ∈ T \ {1} is of

infinite order, then it follows from Theorem 1.2.7 that P is a bi-circular projection.

Remark 2.1.5. It follows from proof of the above Theorem that every GBP is a generalized

n-circular projection, where n is the order of the λ associated with the GBP.

We now give an example which shows that, for a projection P , if 2P − I belongs to the

algebra generated by an isometry, then P need not be a GBP.

Example 2.1.6. Let X be the space of all convergent sequences in C with the sup norm.

Let T : X −→ X be given by

T (x1, x2, x3, x4, . . . ) = (x2, x3, x1, x4, . . .),

which involves a permutation of the first three positions of a sequence in X and the identity

at any other position. Let P = I+T+T 2

3
. It is clear that T is a surjective isometry and

P (x1, x2, x3, x4, . . .) =

(
x1 + x2 + x3

3
,
x1 + x2 + x3

3
,
x1 + x2 + x3

3
, x4, . . .

)
is a projection. We set R = 2P − I. This implies that

R(x1, x2, x3, x4, . . .) =

(
−x1 + 2x2 + 2x3

3
,
2x1 − x2 + 2x3

3
,
2x1 + 2x2 − x3

3
, x4, . . .

)
.
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Therefore, we have R(0, 1, 1, 0, . . .) = 1
3
(4, 1, 1, 0, 0, . . .), which shows that R is not an

isometry.

We claim that P is not a GBP. To see this, given λ of modulus 1 and λ 6= 1, we set

S = P + λ(I − P ). In particular, we have

S(1, 0, 0, 0, . . .) =

(
1

3
+

2

3
λ,

1

3
− 1

3
λ,

1

3
− 1

3
λ, 0, . . .

)
.

If S is an isometry on X, then max{|1
3

+ 2
3
λ|, |1

3
− 1

3
λ|} = 1. We observe that |1

3
− 1

3
λ| < 1

and if |1
3

+ 2
3
λ| = 1, then λ = 1. This contradiction shows that P is not a GBP.

Remark 2.1.7. The projection P defined above is an example of a generalized 3-circular

projection which is not a GBP. Hence, the converse of Remark 2.1.5 is not always true.

Our next result characterizes projections which are GBPs.

Proposition 2.1.8. Let X be a Banach space. Let P be a projection on X such that T =

P+λ(I−P ), for some λ ∈ T\{1}. Then T is an isometry if and only if ‖x−y‖ = ‖x−λy‖

for every x ∈ Range(P ) and y ∈ Ker(P ).

Proof. The projection P determines two closed subspaces, Range(P ) and Ker(P ) such that

X = Range(P )⊕Ker(P ). Since T is an isometry, ‖x− y‖ = ‖Tx− Ty‖ for every x and y

in X. In particular, for x in the range of P and y in the kernel of P , we have Tx = x and

Ty = λy.

Conversely, for every x ∈ Range(P ) and y ∈ Ker(P ), we have Tx = x and Ty = λy.

Therefore, ‖x− y‖ = ‖x− λy‖ = ‖Tx− Ty‖.

Corollary 2.1.9. A generalized bi-circular projection P on X is the average of the identity

with an isometric reflection if and only if for every x ∈ Range(P ) and y ∈ Ker(P ),

‖x− y‖ = ‖x+ y‖.

The next proposition asserts that every projection on a Banach space is a generalized

bi-circular projection in some equivalent renorming of the given space.
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2.1. A characterization of generalized bi-circular projection

Proposition 2.1.10. Let P be a projection on a Banach space X. Then X can be equiva-

lently renormed so that 2P−I is an isometric reflection and consequently, P is a generalized

bi-circular projection.

Proof. We set R = 2P−I and observe that R2 = I. This implies that R is an isomorphism.

We define ‖x‖1 = ‖x‖+ ‖R(x)‖, for all x ∈ X. This new norm is equivalent to the original

norm on X and R relative to this norm is an isometry. In fact we have that, given x ∈ X,

‖R(x)‖1 = ‖R(x)‖+ ‖R(R(x))‖ = ‖x‖1.

We now give an example to show that the λ associated with a GBP may not be always

−1.

Example 2.1.11. Let X be C3 with the max norm, ‖(x, y, z)‖∞ = max{|x|, |y|, |z|} and

λ = exp(2πi
3

) = −1
2

+ i
√

3
2

.

We consider the following projection P on C3 :

P (x, y, z) =
1

3
(x+ y + z, x+ y + z, x+ y + z).

Let T = P + λ(I − P ). Straightforward computations imply that

T (x, y, z) = (a x+ b (y + z), a y + b (x+ z), a z + b (x+ y)) ,

with a = i
√

3
3

and b = 1
2
−
√

3i
6

.

Since we have T (0, 0, 1) = (b, b, a), T is not an isometry. In fact, ‖(0, 0, 1)‖∞ = 1 and

‖T (0, 0, 1)‖∞ =
√

3
3
6= ‖(0, 0, 1)‖∞. The operator T has order 3 since λ3 = 1.

We now renorm C3 so that T becomes an isometry. The new norm is defined as follows:

‖(x, y, z)‖1 = max{‖(x, y, z)‖∞, ‖T (x, y, z)‖∞, ‖T 2(x, y, z)‖∞}.

This implies that

‖T (x, y, z)‖1 = max{‖T (x, y, z)‖∞, ‖T 2(x, y, z)‖∞, ‖T 3(x, y, z)‖∞}.

But we have T 3 = I, so we get

‖T (x, y, z)‖1 = ‖(x, y, z)‖1.
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Hence, T is an isometry with the norm ‖ · ‖1 and therefore, P is a GBP in C3. We claim

that P can not be written as the average of the identity with an isometric reflection. To

see this, assume on the contrary that P = I+R
2

. Hence, we have R = 2P − I. We show

that R is not an isometry. We observe that

R(0, 0, 1) = (2/3, 2/3,−1/3),

(TR)(0, 0, 1) =
1

3

(
1

2
+

√
3

2
i,

1

2
+

√
3

2
i, 2− i

√
3

)
and

(T 2R)(0, 0, 1) =
1

3

(
1

2
−
√

3

2
i,

1

2
−
√

3

2
i, 2 + i

√
3

)
.

Since we have

‖R(0, 0, 1)‖∞ =
2

3
, ‖(TR)(0, 0, 1)‖∞ = ‖(T 2R)(0, 0, 1)‖∞ =

√
7

3
,

we conclude that

‖R(0, 0, 1)‖1 = max

{
2

3
,

√
7

3

}
=

√
7

3
6= ‖(0, 0, 1)‖1 = 1.

Remark 2.1.12. It is worth mentioning that the projection P above does not satisfy

the condition stated in Corollary 2.1.9. For example, if x = (1, 1, 1) ∈ Range(P ), y =

(1, 1,−2) ∈ Ker(P ), we have ‖x+ y‖1 =
√

7 and ‖x− y‖1 = 3.

2.2 Projections as combination of finite order operators

In this section we investigate the existence of projection defined as linear combination of

the powers of a given finite order operator. We conclude in Theorem 2.2.2 that only certain

averages yield projections.

We recall that the multiplicative group associated with a GBP P is defined to be the

set

ΛP = {λ ∈ T : P + λ(I − P ) is an isometry}.

From the proof of Theorem 2.1.2, it follows that ΛP is either finite or equal to T. If ΛP is

infinite, then P is a bi-circular projection. We give some examples of GBPs together with

their multiplicative groups.
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Example 2.2.1. 1. Consider `∞ with the usual sup norm. Let P be defined as follows:

P (x1, x2, x3, . . .) =

(
x1 + x2

2
,
x1 + x2

2
, x3, · · ·

)
.

We show that ΛP = {1,−1}. Given λ ∈ T such that T = P +λ(I−P ) is a surjective

isometry, then T (x1, x2, x3, . . .)

=

(
(1 + λ)x1 + (1− λ)x2

2
,
(1 + λ)x2 + (1− λ)x1

2
, x3, · · ·

)
.

Theorem 1.2.10 implies that a surjective isometry S on `∞ is of the form

S(x1, x2, x3, . . .) = (µ1xτ(1), µ2xτ(2), . . .),

with τ a bijection of N and {µi} is a sequence of modulus 1 complex numbers. It

follows that T is an isometry if and only if 1 + λ = 0 or 1− λ = 0. Hence, we have

λ = ±1.

2. Let P and T on (C3, ‖ · ‖1) be defined as in Example 2.1.11. Then we have ΛP =

{1, exp(2πi
3

), exp(4πi
3

)}. Since we have T = P + exp(2πi
3

)(I − P ) is an isometry

on (C3, ‖ · ‖1), it follows that T 2 = P + exp(4πi
3

)(I − P ) is also an isometry and

ΛP ⊇ {1, exp(2πi
3

), exp(4πi
3

)}. We now show that ΛP = {1, exp(2πi
3

), exp(4πi
3

)}. As

in Example 2.1.11, let λ = exp(2πi
3

). Given λ0 = a0 + ib0 of modulus 1 such that

λ0 /∈ {1, exp(2πi
3

), exp(4πi
3

)}, we set S = P + λ0(I − P ). Therefore, we have

S(x, y, z) =
1

3
(cx+ d(y + z), cy + d(x+ z), cz + d(x+ y)),

with c = 1 + 2λ0 and d = 1− λ0 and

‖S(0, 0, 1)‖1 = max{‖S(0, 0, 1)‖∞, ‖TS(0, 0, 1)‖∞, ‖T 2S(0, 0, 1)‖∞}.

We now have

S(0, 0, 1) =
1

3
(d, d, c), TS(0, 0, 1) =

1

3
(1− λ0λ, 1− λ0λ, 1 + 2λ0λ)

and

T 2S(0, 0, 1) =
1

3
(1− λ0λ

2, 1− λ0λ
2, 1 + 2λ0λ

2).
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Chapter 2. Representation of Generalized Bi-circular Projections

It is easy to see that each of |1−λ0
3
|, |1−λ0λ

3
| and |1−λ0λ2

3
| is strictly less than 1. More-

over, if any of |1+2λ0
3
|, |1+2λ0λ

3
| or |1+2λ0λ2

3
| is equal to 1, then λ0 = 1, λ0 = λ

or λ0 = λ
2
, respectively. This leads to a contradiction. It also follows from cal-

culations already done in Example 2.1.11 that ‖(0, 0, 1)‖1 = 1. Therefore, we get

‖S(0, 0, 1)‖1 6= ‖(0, 0, 1)‖1 and hence we conclude that λ0 /∈ ΛP .

We now show the main result of this section on the existence of projections written as

a linear combination of operators with a cyclic property.

We recall from Introduction that, the discrete Fourier coefficient of a k-tuple z =

(z(0), . . . , z(k − 1)) is defined as ẑ(m) =
∑k−1

n=0 z(n)ρmn, where ρ = e−2πi/k. Then z is the

inverse discrete Fourier transform (IDFT for short) of ẑ.

Theorem 2.2.2. Let P a bounded operator on a Banach space X. Let λ0, . . . , λk−1 be

nonzero complex numbers and P =
∑k−1

i=0 λi T
i, where T is an operator of order k. Then

P is a projection if and only if λ = (λ0, λ1, . . . , λk−1) is the IDFT of δS, for some S ⊆

{0, . . . , k − 1}.

Proof. Suppose that P =
∑k−1

i=0 λi T
i, where T is an operator of order k. Then Theorem

1.2.9 asserts that

T = Q0 + ρQ1 + · · ·+ ρk−1Qk−1

with {Q0, . . . , Qk−1} pairwise orthogonal projections. Since we have

T i = Q0 + ρiQ1 + · · ·+ ρi(k−1)Qk−1 =
k−1∑
j=0

ρijQj,

we conclude that

P = λ0I + λ1T + · · ·+ λk−1T
k−1

= λ0(
k−1∑
j=0

Qj) + λ1(
k−1∑
j=0

ρjQj) + · · ·+ λk−1

k−1∑
j=0

ρj(k−1)Qj

= (
k−1∑
j=0

λj)Q0 + (
k−1∑
j=0

λjρ
j)Q1 + · · ·+ (

k−1∑
j=0

λjρ
j(k−1))Qk−1

= α0Q0 + α1Q1 + · · ·+ αk−1Qk−1,
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2.3. Spaces of vector-valued functions

where αi =
∑k−1

j=0 λjρ
ij. Since P is a projection, that is, P 2 = P and {Q0, . . . , Qk−1} are

pairwise orthogonal projections, we have that α2
i = αi, for i = 0, . . . , k − 1. This implies

that (λ0, λ1, . . . , λk−1) is the IDFT (δS) for some subset S of {0, . . . , k − 1}.

Conversely, let T =
∑k−1

i=0 ρ
iQi . Then we have

δS(0)Q0 + δS(1)Q1 + · · ·+ δS(k − 1)Qk−1 =
k−1∑
i=0

λi T
i

and

P = δS(0)Q0 + δS(1)Q1 + · · ·+ δS(k − 1)Qk−1.

This implies that P 2 = P and the proof is complete.

2.3 Spaces of vector-valued functions

In this section we characterize generalized bi-circular projections on spaces of continuous

functions defined on a locally compact Hausdorff space. This characterization extends

Theorem 1.2.15 to to more general settings.

Lemma 2.3.1. Let X be a Banach space and λ ∈ T \ {1}. Then the following assertions

are equivalent:

(a) T is a bounded operator on X satisfying T 2 − (λ+ 1)T + λI = 0.

(b) There exists a projection P on X such that P + λ(I − P ) = T .

Proof. (a) =⇒ (b) We define P =
T − λI
1− λ

. Then we have P + λ(I − P ) = T . Moreover,

we see that

P 2 =
T 2 + λ2 − 2λT

(1− λ)2

=
(λ+ 1)T − λI + λ2 − 2λT

(1− λ)2

=
(1− λ)(T − λI)

(1− λ)2

= P.
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Chapter 2. Representation of Generalized Bi-circular Projections

(b) =⇒ (a)

T 2 − (λ+ 1)T + λI = P + λ2(I − P )− (λ+ 1)[P + λ(I − P )] + λI

= −λP + [λ2 − λ(λ+ 1)](I − P ) + λI

= 0.

Theorem 2.3.2. Let Ω be a locally compact Hausdorff space and X a Banach space with

trivial centralizer. Let P be a generalized bi-circular projection on C0(Ω, X). Then one

and only one of the following assertions holds:

(a) P = I+T
2

, where T is an isometry on C0(Ω, X).

(b) Pf(ω) = Pω(f(ω)), where Pω is a generalized bi-circular projection on X.

Proof. Let P + λ(I −P ) = T , where λ ∈ T \ {1} and T is an isometry on C0(Ω, X). From

Theorem 1.2.13, T has the form

Tf(ω) = uω(f(φ(ω))), ∀ ω ∈ Ω, f ∈ C0(Ω, X),

where u : Ω −→ G(X) continuous in strong operator topology and φ is a homeomorphism

of Ω onto itself. From Lemma 2.3.1, we have

T 2 − (λ+ 1)T + λI = 0.

That is,

uω ◦ uφ(ω)(f(φ2(ω)))− (λ+ 1)uω(f(φ(ω))) + λf(ω) = 0. (2.3.1)

Let ω ∈ Ω. If φ(ω) 6= ω, then φ2(ω) = ω. For otherwise, there exists h ∈ C0(Ω) such that

h(ω) = 1, h(φ(ω)) = h(φ2(ω)) = 0. For f = h⊗x, where x is a fixed vector in X, Equation

(2.3.1) reduces to λ = 0, contradicting the assumption on λ. Now, choosing h ∈ C0(Ω)

such that h(ω) = 0, h(φ(ω)) = 1 we get λ = −1. This implies that uω ◦ uφ(ω) = I. Let

φ(ω) = ω and φ is not the identity, then we choose an ω0 6= φ(ω0) and conclude from above

that λ = −1. This again implies that u2
ω = I. Hence, in both cases P will be of the form

I+T
2

and T 2 = I.
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2.3. Spaces of vector-valued functions

If φ(ω) = ω for all ω ∈ Ω, then we will have from Equation (2.3.1)

u2
ω − (λ+ 1)uω + λI = 0.

Thus from Lemma 2.3.1, there exists a projection Pω on X such that Pω +λ(I−Pω) = uω.

Since uω is an isometry, Pω is a GBP. Therefore, we have Pf(ω) = Pω(f(ω)).

This completes the proof.

Corollary 2.3.3. Let Ω be a locally compact Hausdorff space and P a generalized bi-

circular projection on C0(Ω). Then P = I+T
2

, where T is an isometry on C0(Ω).

We recall that the L∞-structure of a Banach space X is the set of all projections P

satisfying

‖x‖ = max{‖Px‖, ‖x− Px‖} ∀ x ∈ X.

This structure is said to be trivial if it consists only of zero and the identity.

If (Xn) is a sequence of Banach spaces such that every Xn has trivial L∞-structure,

then the surjective isometries of
⊕

c0
Xn is described in Theorem 1.2.17. If T is surjective

isometry of
⊕

c0
Xn, then it is of the form

(Tx)n = Unπ(n)xπ(n) for each x = (xn) ∈
⊕
c0

Xn.

Here, π is a permutation of N and Unπ(n) is a sequence of isometric operators which maps

Xπ(n) onto Xn.

Suppose P is a GBP on
⊕

c0
Xn, then we have the following result.

Theorem 2.3.4. Let P is a a generalized bi-circular projection on
⊕

c0
Xn such that each

Xn has trivial L∞-structure. Then one and only one of the following holds.

(a) P = I+T
2

, where T is an isometry on
⊕

c0
Xn.

(b) (Px)n = Pnxn, where Pn is a generalized bi-circular projection on Xn.
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Proof. Let P + λ(I − P ) = T , where λ ∈ T \ {1} and T is an isometry on
⊕

c0
Xn. Then

T has the form (Tx)n = Unπ(n)xπ(n) for each x = (xn) ∈
⊕

c0
Xn, where π and Unπ(n) are

as above. From Lemma 2.3.1, we have

T 2 − (λ+ 1)T + λI = 0

or for each x = (xn) ∈
⊕

c0
Xn

T 2x− (λ+ 1)Tx+ λx = 0.

Thus, for all n ∈ N

Unπ(n) ◦ Uπ(n)π2(n) xπ2(n) − (λ+ 1)Unπ(n) xπ(n) + λxn = 0. (2.3.2)

For any x = (xn) ∈
⊕

c0
Xn, let exn denote the vector in

⊕
c0
Xn having xn in the nth

coordinate and 0 elsewhere.

Let x = (xn) ∈
⊕

c0
Xn. If π(n) 6= n, then π2(n) = n. Otherwise, by choosing exn

in Equation (2.3.2) we get λ = 0, which is a contradiction. Now, considering x = exπ(n)

Equation (2.3.2) implies that λ = −1. Thus, Unπ(n) ◦ Uπ(n)π2(n) = I. If π(n) = n and π is

not the identity then by choosing n0 6= π(n0) and proceeding as above we get λ = −1 and

U2
nn = I. Hence, assertion (a) is proved.

For the case π(n) = n for all n, Equation (2.3.2) reduces to

U2
nn − (λ+ 1)Unn + λI = 0.

Lemma 2.3.1 implies that for each n ∈ N there exists a projection Pn on Xn such that

Pn + λ(I − Pn) = Unn. Since Unn is an isometry, Pn is a GBP and hence, (Px)n = Pnxn.

This completes the proof.
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3
Projection in Convex Hull of Three

Isometries

3.1 Statement of results

Let Ω be a compact connected Hausdorff space. The following are the main results of this

chapter.

Theorem 3.1.1. Let Ω be a compact connected Hausdorff space and P0 a proper generalized

3-circular projection on C(Ω). Then there exists a surjective isometry T on C(Ω) such that

(a) P0 + ωP1 + ω2P2 = T , where P1 and P2 are as in Definition 1.2.1 and ω is a cube

root of unity,

(b) T 3 = I.

Hence, P0 = I+T+T 2

3
.

Theorem 3.1.2. Let Ω be a compact connected Hausdorff space. Let P be a projection

on C(Ω) such that P = α1T1 + α2T2 + α3T3, where T1, T2, T3 are surjective isometries of

C(Ω), αi > 0, i = 1, 2, 3 and α1 + α2 + α3 = 1. Then either,
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(a) αi = 1
2

for some i = 1, 2, 3 αj + αk = 1
2
, j, k 6= i and Tj = Tk, or

(b) α1 = α2 = α3 = 1
3

and T1, T2, T3 are distinct surjective isometries. Moreover,

in this case there exists a surjective isometry T on C(Ω) such that T 3 = I and

P = I+T+T 2

3
.

All the results presented in this chapter appeared in [2].

3.2 Proof of results

Theorem 3.2.1. Let Ω be a compact connected Hausdorff space and P0 a generalized 3-

circular projection on C(Ω). Then either,

(a) λ1 and λ2 are cube roots of unity, or

(b) P0 is a generalized bi-circular projection. In this case, λ1, λ2 ∈ {i,−i}.

The following two lemmas will be useful for the proof of Theorem 3.2.1 and later in

Chapter 4.

Lemma 3.2.2. Let X be a Banach space such that every GBP on X is given by I+L
2

, where

L ∈ G(X). Let P0 be a generalized 3-circular projection on X and λ1, λ2, P1, P2 are as

in Definition 1.2.1. Then λ1 and λ2 are of same order.

Proof. Let λm1 = λn2 = 1 and m 6= n. Without loss of generality we assume that m < n. Let

P0 +λ1P1 +λ2P2 = T where T ∈ G(X). Then P0 +λm1 P1 +λm2 P2 = (P0 +P1)+λm2 P2 = Tm.

Since Tm is again a surjective isometry and P2 = I − (P0 + P1), by the assumption on X,

we have λm2 = −1. Hence n divides 2m. Similarly, we obtain λn1 = −1 and m divides 2n.

Thus, we have 2n = mk1, 2m = nk2. It follows that k1k2 = 4. Since we have assumed

m < n, this implies k1 = 4, k2 = 1. But then −1 = λn1 = λ2m
1 = 1 - A contradiction. Hence

m = n.

Remark 3.2.3. Theorem 1.2.15 implies that any GBP on C(Ω) is of the form I+T
2

, where

T ∈ G(C(Ω)) and Ω is a compact connected Hausdorff space. Therefore, Lemma 2.1 in [2]

follows directly from Lemma 3.2.2.
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3.2. Proof of results

Lemma 3.2.4. Let X be a Banach space. Then the following assertions are equivalent.

(i) There exists a generalized 3-circular projection on X.

(ii) There exist λ1, λ2 ∈ T \ {1}, λ1 6= λ2 and T ∈ G(X) such that

(T − I)(T − λ1I)(T − λ2I) = 0. (3.2.1)

Proof. (i) =⇒ (ii) Let P0 be a generalized 3-circular projection on X. Then there exist

projections P1, P2, P0⊕P1⊕P2 = I and λ1, λ2 ∈ T\{1}, λ1 6= λ2 such that P0+λ1P1+λ2P2

is a surjective isometry. Let P0 + λ1P1 + λ2P2 = T . By eliminating P1 and P2 we get

P0 =
(T − λ1I)(T − λ2I)

(1− λ1)(1− λ2)
.

Thus, we have

(T − I)(T − λ1I)(T − λ2I) =

[(λ1 − 1)P1 + (λ2 − 1)P2](1− λ1)(1− λ2)P0 = 0.

(ii) =⇒ (i) We define P0 =
(T − λ1I)(T − λ2I)

(1− λ1)(1− λ2)
,

P1 =
(T − λ2I)(T − I)

(λ1 − 1)(λ1 − λ2)
and P2 =

(T − λ1I)(T − I)

(λ2 − 1)(λ2 − λ1)
.

It is easy to check P0 + λ1P1 + λ2P2 = T and P0 + P1 + P2 = I. Let

S =
(T − λ1I)(T − λ2I)

(1− λ1)2(1− λ2)2
.

Then we have

P 2
0 =

(T − λ1I)(T − λ2I)

(1− λ1)2(1− λ2)2
[T 2 − (λ1 + λ2)T + λ1λ2I]

= S [T 2 − (λ1 + λ2)(T − I)− (λ1 + λ2)I + λ1λ2I]

= S [T 2 − (λ1 + λ2)I + λ1λ2I] (Eq. (3.2.1)⇒ S(T − I) = 0)

= S [T 2 − I + I − (λ1 + λ2)I + λ1λ2I]

= S [I − (λ1 + λ2)I + λ1λ2I] (∵ S(T 2 − I) = 0)

= S [(1− λ1)(1− λ2)I]
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= P0.

Similarly, we can show that P1 and P2 are projections. Also, Equation (3.2.1) implies that

PiPj = 0 for i 6= j. Hence, P0 is a generalized 3-circular projection and assertion (i) is

proved.

Proof of Theorem 3.2.1

Let P0 be a generalized 3-circular projection. Then there exist projections P1, P2, P0 ⊕

P1 ⊕ P2 = I and λ1, λ2 ∈ T \ {1}, λ1 6= λ2 such that P0 + λ1P1 + λ2P2 = T , for some

T ∈ G(C(Ω)). By Theorem 1.2.10, there exist a homeomorphism φ on Ω and a continuous

function u : Ω → T such that for any f ∈ C(Ω), ω ∈ Ω we have Tf(ω) = u(ω)f(φ(ω)).

From Lemma 3.2.4, we have

P0 =
(T − λ1I)(T − λ2I)

(1− λ1)(1− λ2)
. (3.2.2)

Also, if we take λ1 + λ2 = a and λ1λ2 = b, Equation (3.2.1) implies that

T 3 − (1 + a)T 2 + (a+ b)T − bI = 0

or

u(ω)u(φ(ω))u(φ2(ω))f(φ3(ω))− (1 + a)u(ω)u(φ(ω))f(φ2(ω))

+ (a+ b)u(ω)f(φ(ω))− bf(ω) = 0. (3.2.3)

If ω, φ(ω), φ2(ω) and φ3(ω) are all distinct, then we choose f ∈ C(Ω) such that f(φ(ω)) =

f(φ2(ω)) = f(φ3(ω)) = 0 and f(ω) = 1 to get b = 0, which is a contradiction.

So, we consider the following cases:

(I) ω = φ2(ω), ω 6= φ(ω). Then we have φ(ω) = φ3(ω). We consider a function

f ∈ C(Ω) such that f(ω) = 1, f(φ(ω)) = 0. Then Equation (3.2.3) becomes

−(1 + a)u(ω)u(φ(ω))− b = 0, hence u(ω)u(φ(ω)) = − b

1 + a
.

Similarly, considering an f ∈ C(Ω) such that f(ω) = 0, f(φ(ω)) = 1, Equation (3.2.3)

gives

u(ω)u(φ(ω)) = −(a+ b). Thus, we have
b

1 + a
= a+ b.
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That is,

(1 + λ1 + λ2)(λ1 + λ2 + λ1λ2) = λ1λ2,

or

2 + λ1 + λ2 +
1

λ1

+
1

λ2

+
λ1

λ2

+
λ2

λ1

= 0.

By Lemma 3.2.2, there exists an n such that both λ1 and λ2 are nth roots of identity.

Hence, we may assume λ2 = λm1 for some m.

Thus, the above equation can be written as,

λ2m
1 + λ2m−1

1 + λm+1
1 + 2λm1 + λm−1

1 + λ1 + 1 = 0,

or

(λ1 + 1)(λm−1
1 + 1)(λm1 + 1) = 0.

Therefore, we have λ1 = −1, λm1 = −1 or λm−1
1 = −1.

If λ1 = −1, then from Lemma 3.2.2 we have λ2 = ±1. Since λ2 6= 1, we get λ2 = −1.

Therefore, λ1 = λ2 - A contradiction on the assumption on λ1 and λ2.

If λm1 = −1, then we have λ2 = −1 and by the same argument above we get λ1 = −1

which is a contradiction again.

If λm−1
1 = −1 then we have λ2 = λm1 = −λ1. It follows that, T = P0 + λ1(P1 − P2).

This implies that T 2 = P0 + λ2
1(P1 + P2). Since T 2 is an isometry, P0 is a GBP and hence

by Theorem 1.2.15, we have λ2
1 = −1. Therefore, we get λ1 = ±i and λ2 = ∓i.

Thus, assertion (b) is proved.

(II) ω = φ3(ω), ω 6= φ(ω) 6= φ2(ω) 6= ω. By choosing an f ∈ C(Ω) such that

f(φ(ω)) = 1, f(ω) = f(φ2(ω)) = 0, Equation (3.2.3) implies that a + b = 0. Similarly, if

we choose an f ∈ C(Ω) such that f(φ2(ω)) = 1, f(ω) = f(φ(ω)) = 0 we get 1 + a = 0.

Thus, we have a = −1 and b = 1. This implies that λ1 and λ2 are the cube roots of identity

and hence assertion (a) is proved.

(III) ω = φ(ω). In this case, Equation (3.2.3) gives u3(ω)−(1+a)u2(ω)+(a+b)u(ω)−

b = 0. Thus, for each ω ∈ Ω, u(ω) has 3 possible values. Now, if ω = φ(ω) is the entire set

then from connectedness of Ω it follows that u is a constant function. By Equation (3.2.2),
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P0 is constant multiple of the identity operator and since P0 is a projection, it is either I

or 0 operator.

This completes the proof of Theorem 3.2.1. �

Proof of Theorem 3.1.1

If P0 is a proper generalized 3-circular projection on C(Ω), then it is not a GBP. Hence,

by Theorem 3.2.1 we conclude that λ1 and λ2 are cube roots of unity. This completes the

proof. �

Proof of Theorem 3.1.2

We start by observing the following fact. If P is a proper projection, then ∃ f ∈ C(Ω), f 6=

0 such that Pf = 0. Hence, α1T1f +α2T2f = −α3T3f . Since T1, T2 and T3 are isometries,

by taking norms we have α1 + α2 ≥ α3. Similarly, α2 + α3 ≥ α1 and α1 + α3 ≥ α2. Thus,

if P is a proper projection then α1, α2 and α3 are the lengths of sides of a triangle. It is

also evident that αi ≤ 1/2, i = 1, 2, 3.

Let Tif(ω) = ui(ω)f(φi(ω)), i = 1, 2, 3 where ui is a continuous function from Ω to T

and φi is a homeomorphism on Ω.

P is a projection if and only if

α1u1(ω)[α1u1(φ1(ω))f(φ2
1(ω)) + α2u2(φ1(ω))f(φ2 ◦ φ1(ω)) + α3u3(φ1(ω))f(φ3 ◦ φ1(ω))] +

α2u2(ω)[α1u1(φ2(ω))f(φ1 ◦ φ2(ω)) + α2u2(φ2(ω))f(φ2
2(ω)) + α3u3(φ2(ω))f(φ3 ◦ φ2(ω))] +

α3u3(ω)[α1u1(φ3(ω))f(φ1 ◦ φ3(ω)) + α2u2(φ3(ω))f(φ2 ◦ φ3(ω)) + α3u3(φ3(ω))f(φ2
3(ω))] =

α1u1(ω)f(φ1(ω)) + α2u2(ω)f(φ2(ω)) + α3u3(ω)f(φ3(ω)). (∗∗)

We partition Ω as follows:

A = {ω ∈ Ω : φ1(ω) = φ2(ω) = φ3(ω)},

Bi = {ω ∈ Ω : ω = φj(ω) = φk(ω) 6= φi(ω)},

Ci = {ω ∈ Ω : ω = φi(ω) 6= φj(ω) = φk(ω)},

Di = {ω ∈ Ω : ω = φi(ω) 6= φj(ω) 6= φk(ω) 6= ω},

Ei = {ω ∈ Ω : ω 6= φi(ω) 6= φj(ω) = φk(ω) 6= ω} and
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F = {ω ∈ Ω : none of ω, φ1(ω), φ2(ω), φ3(ω) are equal},

where i, j, k = 1, 2, 3.

Since the proof is long, we divide the proof into the following steps.

Step I. We show that Ω 6= A (Lemma 3.2.5).

Step II. We show that if Ω = Bi, i = 1, 2, 3 then αi = 1/2 (Lemma 3.2.6).

Step III. We show that Ei = F = ∅, for i = 1, 2, 3 (Lemma 3.2.7).

Step IV. We show that if ω ∈ Ci, i = 1, 2, 3 then αi = 1/2 (Lemma 3.2.8).

Step V. We show that if ω ∈ Di, i = 1, 2, 3 then α1 = α2 = α3 = 1/3 (Lemma 3.2.9).

Step VI. This is the final step. In this step we will show that only certain combinations

of Bi, Ci and Di are allowed (Lemma 3.2.10), i = 1, 2, 3. Then we will complete the proof.

Lemma 3.2.5. Ω 6= A.

Proof. Suppose A 6= ∅ and ω ∈ A. Then we have φ1(ω) = φ2(ω) = φ3(ω). Equation (∗∗)

is reduced to

[α1u1(ω) + α2u2(ω) + α3u3(ω)][α1u1(φ1(ω))f(φ2
1(ω)) + α2u2(φ1(ω))f(φ2

2(ω)) +

α3u3(φ1(ω))f(φ2
3(ω))] = [α1u1(ω) + α2u2(ω) + α3u3(ω)]f(φ1(ω)). (3.2.4)

Let A1 = {ω ∈ A : α1u1(ω) + α2u2(ω) + α3u3(ω) 6= 0} and A2 = A \ A1.

If ω ∈ A1, then we have

α1u1(φ1(ω))f(φ2
1(ω)) + α2u2(φ1(ω))f(φ2

2(ω)) + α3u3(φ1(ω))f(φ2
3(ω)) = f(φ1(ω)).

First evaluating at the constant function 1 we observe that

α1u1(φ1(ω)) + α2u2(φ1(ω)) + α3u3(φ1(ω)) = 1.

Hence, we get ui(φi(ω)) = 1, i = 1, 2, 3. Thus we obtain,

α1f(φ2
1(ω)) + α2f(φ2

2(ω)) + α3f(φ2
3(ω)) = f(φ1(ω)).

Now, if φ1(ω) is not equal to any of φ2
i (ω), i = 1, 2, 3 then choosing an f ∈ C(Ω) such

that f(φ1(ω)) = 1 and f(φ2
i (ω) = 0, we get a contradiction. Similarly, if φ1(ω) is equal to
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one or two among φ2
i (ω), i = 1, 2, 3 then choosing an appropriate f we get either αi = 1

or αj + αk = 1, both contradicting the choices of α1, α2, α3 where j, k = 1, 2, 3.

Thus in this case, we must have, φ2
1(ω) = φ2

2(ω) = φ2
3(ω) = φ1(ω) or ω = φ1(ω) =

φ2(ω) = φ3(ω). Hence, Pf(ω) = f(ω) if ω ∈ A1 and Pf(ω) = 0 if ω ∈ A2. In particular,

for the constant function 1, P1 is a 0, 1 valued function. By the connectedness of Ω we

have Ω 6= A.

Lemma 3.2.6. If Ω = Bi, then αi = 1/2 and uj(ω) = uk(ω) = uj(φi(ω)) = uk(φi(ω)) =

ui(ω)ui(φi(ω)) = 1, where i, j, k = 1, 2, 3.

Proof. Let us consider any ω ∈ B1, that is, ω = φ3(ω) = φ2(ω) 6= φ1(ω). The case of

ω ∈ B2 or B3 is similar. Equation (∗∗) is reduced to

α1u1(ω)[α1u1(φ1(ω))f(φ2
1(ω)) + α2u2(φ1(ω))f(φ2 ◦ φ1(ω)) + α3u3(φ1(ω))f(φ3 ◦ φ1(ω))]

+ [α2u2(ω) + α3u3(ω)]{α1u1(ω)f(φ1(ω)) + [α2u2(ω) + α3u3(ω)]f(ω)}

= α1u1(ω)f(φ1(ω)) + [α2u2(ω) + α3u3(ω)]f(ω). (3.2.5)

We claim that α2u2(ω)+α3u3(ω) 6= 0. Suppose on the contrary that α2u2(ω)+α3u3(ω) = 0.

Then we get α2 = α3, u2(ω) + u3(ω) = 0 and Equation (3.2.5) becomes

α1u1(φ1(ω))f(φ2
1(ω)) + α2u2(φ1(ω))f(φ2 ◦ φ1(ω)) + α3u3(φ1(ω))f(φ3 ◦ φ1(ω)) = f(φ1(ω)).

By the same argument applied in proof of Lemma 3.2.5, we conclude that φ1(ω) = φ2
1(ω) =

φ2 ◦ φ1(ω) = φ3 ◦ φ1(ω), which contradicts the choice of ω.

We now choose a function f ∈ C(Ω) such that f(ω) = 1, f(φ1(ω)) = f(φ2 ◦ φ1(ω)) =

f(φ3 ◦ φ1(ω)) = 0. So, Equation (3.2.5) becomes

α2
1u1(ω)u1(φ1(ω))f(φ2

1(ω)) + [α2u2(ω) + α3u3(ω)]2 = α2u2(ω) + α3u3(ω). (3.2.6)

We observe that φ2
1(ω) must be equal to one of ω, φ2 ◦ φ1(ω) or φ3 ◦ φ1(ω). If φ2

1(ω) =

φ3◦φ1(ω) or φ2◦φ1(ω), then we have f(φ2
1(ω)) = 0. This implies that α2u2(ω)+α3u3(ω) = 1
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as α2u2(ω) + α3u3(ω) 6= 0. It follows that, 1 ≤ α2 + α3, a contradiction to the fact that

α1 + α2 + α3 = 1. Therefore, we get φ2
1(ω) = ω and Equation (3.2.6) is reduced to

α2
1u1(ω)u1(φ1(ω)) + [α2u2(ω) + α3u3(ω)]2 = α2u2(ω) + α3u3(ω). (3.2.7)

Again, for a function f ∈ C(Ω) such that f(ω) = 0, f(φ1(ω)) = 1, Equation (3.2.5) reduces

to

α2u2(ω) + α3u3(ω) + α2u2(φ1(ω))f(φ2 ◦ φ1(ω)) + α3u3(φ1(ω))f(φ3 ◦ φ1(ω)) = 1. (3.2.8)

By a similar line of argument, we conclude that φ1(ω) = φ2 ◦ φ1(ω) = φ3 ◦ φ1(ω). So,

Equation (3.2.8) becomes

α2u2(ω) + α3u3(ω) + α2u2(φ1(ω)) + α3u3(φ1(ω)) = 1. (3.2.9)

Now, we have

Pf(ω) = α1u1(ω)f(φ1(ω)) + [α2u2(ω) + α3u3(ω)]f(ω),

which implies that

|Pf(ω)| ≤ |α2u2(ω) + α3u3(ω)||f(ω)|+ α1|f(φ1(ω))|.

As Ω = B1, there exist ω0 ∈ Ω and f ∈ C(Ω) such that ||f || = 1 = |Pf(ω0)|. This shows

that |α2u2(ω0) + α3u3(ω0)| = α2 + α3. Therefore, we have u2(ω0) = u3(ω0) = 1. From

Equation (3.2.7) we get α1 ≥ 1/2. Since α1 ≤ 1/2, we conclude that α1 = 1/2. Also,

from Equation (3.2.9) we have u2(ω) = u3(ω) = u2(φ1(ω)) = u3(φ1(ω)) = 1. Moreover,

Equation (3.2.7) implies that u1(ω)u1(φ(ω)) = 1.
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Lemma 3.2.7. For i = 1, 2, 3 Ei = ∅ and F = ∅.

Proof. We show E1 = ∅. For the case of E2 and E3, the proof is exactly the same.

Let ω ∈ E1, that is, ω 6= φ1(ω) 6= φ2(ω) = φ3(ω) 6= ω. Then Equation (∗∗) reduces to

α1u1(ω)[α1u1(φ1(ω))f(φ2
1(ω)) + α2u2(φ1(ω))f(φ2 ◦ φ1(ω)) + α3u3(φ1(ω))f(φ3 ◦ φ1(ω))] +

[α2u2(ω)+α3u3(ω)][α1u1(φ2(ω))f(φ1◦φ2(ω))+α2u2(φ2(ω))f(φ2
2(ω))+α3u3(φ2(ω))f(φ2

3(ω))]

= α1u1(ω)f(φ1(ω)) + [α2u2(ω) + α3u3(ω)]f(φ2(ω)). (3.2.10)

First we claim α2u2(ω) + α3u3(ω) 6= 0. To see the claim, suppose α2u2(ω) + α3u3(ω) = 0.

Then Equation (3.2.10) further reduces to

α1u1(φ1(ω))f(φ2
1(ω)) + α2u2(φ1(ω))f(φ2 ◦ φ1(ω)) + α3u3(φ1(ω))f(φ3 ◦ φ1(ω)) = f(φ1(ω)).

By similar argument which was applied in the proof of Lemma 3.2.5, we get φ1(ω) =

φ3 ◦ φ1(ω) = φ2 ◦ φ1(ω) = φ2
1(ω), which is clearly a contradiction to the choice of ω.

Secondly, we choose a function f ∈ C(Ω) such that f(φ1(ω)) = 1 and f(φ2(ω)) =

f(φ1 ◦ φ2(ω)) = f(φ2
1(ω)) = 0. Equation (3.2.10) now reduces to

α1u1(ω)[α2u2(φ1(ω))f(φ2 ◦ φ1(ω)) + α3u3(φ1(ω))f(φ3 ◦ φ1(ω))] +

[α2u2(ω) + α3u3(ω)][α2u2(φ2(ω))f(φ2
2(ω)) + α3u3(φ2(ω))f(φ2

3(ω))] = α1u1(ω) (3.2.11)

If φ1(ω) is not equal to any of the points φ2 ◦ φ1(ω), φ3 ◦ φ1(ω), φ2
2(ω) and φ2

3(ω), then we

could have chosen our f to have value 0 at these points and this would have lead us to a

contradiction. If φ1(ω) = φ2 ◦ φ1(ω), then clearly we could choose f(φ2
2(ω)) = 0. If both

φ3 ◦ φ1(ω) and φ2
3(ω) are not equal to φ1(ω), then choosing f to take value 0 at φ3 ◦ φ1(ω)

and φ2
3(ω) we have

α1α2u1(ω)u2(φ1(ω)) = α1u1(ω)

and hence we get α2 = 1, a contradiction again. Thus, either of φ3 ◦ φ1(ω) and φ2
3(ω) is

equal to φ1(ω).
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Similar consideration with φ1(ω) = φ3 ◦ φ1(ω), φ1(ω) = φ2
2(ω) and φ1(ω) = φ2

3(ω) lead

us to the conclusion that φ1(ω) will be equal to exactly two elements of the set

{φ2 ◦ φ1(ω), φ3 ◦ φ1(ω), φ2
2(ω), φ2

3(ω)}.

If φ1(ω) = φ2 ◦ φ1(ω) = φ3 ◦ φ1(ω) then Equation (3.2.11) will imply that α2u2(φ1(ω)) +

α3u3(φ1(ω)) = 1 - A contradiction.

Finally, let us suppose that φ1(ω) = φ2 ◦ φi(ω) = φ3 ◦ φj(ω) where i = 1, 2, j = 2, 3;

i 6= j and choose a function f such that f(φ2(ω)) = 1 and f(φ1(ω)) = f(φ2 ◦ φi1(ω)) =

f(φ3 ◦ φj1(ω)) = 0, where i1 6= i, j1 6= j, and i1 = 1, 2; j = 1, 3. So, Equation (3.2.10)

becomes

α2
1u1(ω)u1(φ1(ω))f(φ2

1(ω)) + [α2u2(ω) + α3u3(ω)]α1u1(φ2(ω))f(φ1 ◦ φ2(ω))

= α2u2(ω) + α3u3(ω). (3.2.12)

If φ2(ω) is not equal to any one of φ2
1(ω) or φ1◦φ2(ω), then we can choose f to be 0 at φ2

1(ω)

and φ1 ◦ φ2(ω), and this will imply that α2u2(ω) + α3u3(ω) = 0, which is a contradiction.

If φ2(ω) = φ1 ◦ φ2(ω), then by choosing f to be 0 at φ2
1(ω) we will get α1 = 1 which is

a contradiction again. Therefore, we have φ2(ω) = φ2
1(ω). Similarly, φ1 ◦ φ2(ω) must be

equal to at least one of φ2 ◦ φi1(ω) or φ2 ◦ φj1(ω). But in this case we will be left with

3 or 4 distinct points in Equation (3.2.10). By choosing f to be 0 at φ1(ω) and φ2(ω)

and large enough at other points on the left hand side of Equation (3.2.10) we will get a

contradiction.

This shows that E1 = ∅.

We now show that F = ∅.

Suppose F 6= ∅. We choose ω ∈ F , then we have ω, φ1(ω), φ2(ω), φ3(ω) are all distinct.

Let us consider the following matrix:
φ1(ω) φ2(ω) φ3(ω)

φ2
1(ω) φ2 ◦ φ1(ω) φ3 ◦ φ1(ω)

φ1 ◦ φ2(ω) φ2
2(ω) φ3 ◦ φ2(ω)

φ1 ◦ φ3(ω) φ2 ◦ φ3(ω) φ2
3(ω)
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We observe that points belonging to any column are all non equal. We choose f such that

f(φ1(ω)) = 1 and f(φ2(ω)) = f(φ3(ω)) = f(φ2
1(ω)) = f(φ1 ◦ φ2(ω)) = f(φ1 ◦ φ3(ω)) = 0.

Equation (∗∗) becomes

α1u1(ω)[α2u2(φ1(ω))f(φ2 ◦ φ1(ω)) + α3u3(φ1(ω))f(φ3 ◦ φ1(ω))] +

α2u2(ω)[α2u2(φ2(ω))f(φ2
2(ω)) + α3u3(φ2(ω))f(φ3 ◦ φ2(ω))] +

α3u3(ω)[α2u2(φ3(ω))f(φ2 ◦ φ3(ω)) + α3u3(φ3(ω))f(φ2
3(ω))] = α1u1(ω)f(φ1(ω)). (3.2.13)

Equation (3.2.13) implies that φ1(ω) must be equal to at least 2 elements from the set

{φ2 ◦ φ1(ω), φ3 ◦ φ1(ω), φ2
2(ω), φ3 ◦ φ2(ω), φ2 ◦ φ3(ω), φ2

3(ω)}.

Since this set does not contain three equal elements, it follows that φ1(ω) is equal to exactly

two; say φ2 ◦ φi1(ω) and φ3 ◦ φj1(ω) with i1, j1 ∈ {1, 2, 3}. Therefore, we have

αi1α2ui1(ω)u2(φi1(ω)) + αj1α3uj1(ω)u3(φj1(ω)) = α1u1(ω).

This implies that

α1 ≤ α2αi1 + α3αj1 .

Similar arguments applied to φ2(ω) and φ3(ω) imply the inequalities:

α2 ≤ α1αi2 + α3αj2 and α3 ≤ α1αi3 + α2αj3 .

Adding these three inequalities we get

1 = α1 + α2 + α3 ≤ α1(αi2 + αi3) + α2(αi1 + αj3) + α3(αj1 + αj2)

≤ max{αi2 + αi3 , αi1 + αj3 , αj1 + αj2}.

This is impossible. Hence, we have F = ∅.
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We now set ourselves to show the following.

Lemma 3.2.8. If ω ∈ Ci, i = 1, 2, 3 then αi = 1/2; ui(ω) = ui(φj(ω)) = 1, uj(ω) = uk(ω),

uj(φj(ω)) = uk(φj(ω)) and uj(ω)uj(φj(ω)) = 1 for j, k = 1, 2, 3; i 6= j, k.

Proof. We prove the result for i = 1. For i = 2 and 3 the argument is similar.

Let ω ∈ C1, that is, ω = φ1(ω) 6= φ2(ω) = φ3(ω), then Equation (∗∗) reduces to

α1u1(ω)[α1u1(ω))f(ω) + α2u2(ω)f(φ2(ω)) + α3u3(ω)f(φ2(ω))] +

[α2u2(ω)+α3u3(ω)][α1u1(φ2(ω))f(φ1◦φ2(ω))+α2u2(φ2(ω))f(φ2
2(ω))+α3u3(φ2(ω))f(φ2

3(ω))]

= α1u1(ω)f(ω) + [α2u2(ω) + α3u3(ω)]f(φ2(ω)). (3.2.14)

We note that in this case we must have α2u2(ω)+α3u3(ω) 6= 0; otherwise Equation (3.2.14)

will give us α1 = 1.

We choose a function f ∈ C(Ω) such that f(φ2(ω)) = 1, f(ω) = f(φ2
2(ω)) = f(φ2

3(ω)) =

0 which will reduce Equation (3.2.14) to

α1u1(ω)[α2u2(ω) + α3u3(ω)] + [α2u2(ω) + α3u3(ω)]α1u1(φ2(ω))f(φ1 ◦ φ2(ω))

= α2u2(ω) + α3u3(ω). (3.2.15)

Since α2u2(ω) + α3u3(ω) 6= 0, we obtain

α1u1(ω) + α1u1(φ2(ω))f(φ1 ◦ φ2(ω)) = 1.

This implies that φ1 ◦ φ2(ω) = φ2(ω) and α1 ≥ 1/2. Since αi ≤ 1/2, ∀i we conclude

α1 = 1/2 and u1(ω) = u1(φ2(ω)) = 1.

Choosing a function f such that f(ω) = f(φ2(ω)) = 0, Equation (3.2.14) becomes

α2u2(φ2(ω))f(φ2
2(ω)) + α3u3(φ2(ω))f(φ2

3(ω)) = 0.

The points φ2
2(ω) and φ2

3(ω) must be equal to one of ω or φ2(ω). Since φ2
2(ω) and φ2

3(ω)

cannot be equal to φ2(ω), we have φ2
2(ω) = φ2

3(ω) = ω. We now choose a function f such

that f(ω) = 1, f(φ2(ω) = 0, Equation (3.2.14) is reduced to

[α2u2(ω) + α3u3(ω)][α2u2(φ2(ω)) + α3u3(φ2(ω))] =
1

4
,
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or

α2
2u2(ω)u2(φ2(ω)) + α2α3u2(ω)u3(φ2(ω)) + α2α3u3(ω)u2(φ2(ω)) + α2

3u3(ω)u3(φ2(ω)) =
1

4
.

Since we have α2 + α3 = 1
2
, it follows that

u2(ω)u2(φ2(ω)) = u2(ω)u3(φ2(ω)) = u3(ω)u2(φ2(ω)) = u3(ω)u3(φ2(ω)) = 1.

This implies that u2(ω) = u3(ω) and u2(φ2(ω)) = u3(φ2(ω)).

Lemma 3.2.9. If ω ∈ Di, i = 1, 2, 3 then α1 = α2 = α3 = 1/3.

Proof. Let ω ∈ D1, that is, ω = φ1(ω) 6= φ2(ω) 6= φ3(ω) 6= ω. Equation (∗∗) reduces to

α1u1(ω)[α1u1(ω)f(ω) + α2u2(ω)f(φ2(ω)) + α3u3(ω)f(φ3(ω))] +

α2u2(ω)[α1u1(φ2(ω))f(φ1 ◦ φ2(ω)) + α2u2(φ2(ω))f(φ2
2(ω)) + α3u3(φ2(ω))f(φ3 ◦ φ2(ω))] +

α3u3(ω)[α1u1(φ3(ω))f(φ1 ◦ φ3(ω)) + α2u2(φ3(ω))f(φ2 ◦ φ3(ω)) + α3u3(φ3(ω))f(φ2
3(ω))] =

α1u1(ω)f(ω) + α2u2(ω)f(φ2(ω)) + α3u3(ω)f(φ3(ω)). (3.2.16)

We divide the proof into three steps.

Step I. We claim that if ω = φ2 ◦ φi(ω), i = 2 or 3, then ω = φ3 ◦ φj(ω), j = 2 or 3.

Step II. We partition the set D1 into six disjoint sets and for each of these sets we show

that α1 = α2 = α3 = 1/3.

Step III. We obtain conditions on ui(ω) and ui(φj(ω)), i = 1, 2, 3 and j = 2, 3, for each

partitioned set.

Proof of Step I

Let f ∈ C(Ω) satisfies f(ω) = 1, f(φ2(ω)) = f(φ3(ω)) = f(φ1◦φ2(ω)) = f(φ1◦φ3(ω)) = 0.

Then Equation (3.2.16) becomes

α2
1u

2
1(ω) + α2u2(ω)[α2u2(φ2(ω))f(φ2

2(ω)) + α3u3(φ2(ω))(φ3 ◦ φ2(ω))] +

α3u3(ω)[α2u2(φ3(ω))f(φ2 ◦ φ3(ω)) + α3u3(φ3(ω))f(φ2
3(ω))] = α1u1(ω). (3.2.17)
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If φ2
2(ω), φ3 ◦φ2(ω), φ2 ◦φ3(ω) and φ2

3(ω) are all different from ω, by choosing our function

f to take value 0 at all these points we will have α2
1u

2
1(ω) = α1u1(ω) and hence α1 = 1.

Thus, not all these points are different from ω.

Claim: If ω = φ2 ◦ φi(ω), i = 2 or 3, then ω = φ3 ◦ φj(ω), j = 2 or 3.

To see the proof of the claim, let ω = φ2 ◦ φi(ω), i = 2 or 3, then in Equation (3.2.17),

f(φ2 ◦ φj(ω)) = 0, j = 2 or 3 and j 6= i. Suppose to the contrary that ω 6= φ3 ◦ φk(ω) for

k = 2, 3 then by choosing our f to be 0 at these points we get from Equation (3.2.17)

α2
1u

2
1(ω) + α2αiui(ω)u2(φi(ω)) = α1u1(ω). (3.2.18)

This implies that

α1 ≤ α2
1 + α2αi. (3.2.19)

We now choose a function f ∈ C(Ω) such that f(φ2(ω)) = 1 and f(ω) = f(φ3(ω)) =

f(φ2
2(ω)) = f(φ2 ◦ φ3(ω)) = 0. Then Equation (3.2.16) is reduced to

α1α2u1(ω)u2(ω) + α2u2(ω)[α1u1(φ2(ω))f(φ1 ◦ φ2(ω)) + α3u3(φ2(ω))f(φ3 ◦ φ2(ω))] +

α3u3(ω)[α1u1(φ3(ω))f(φ1 ◦ φ3(ω)) + α3u3(φ3(ω))f(φ2
3(ω))] = α2u2(ω). (3.2.20)

Again, if all φ1 ◦ φ2(ω), φ3 ◦ φ2(ω), φ1 ◦ φ3(ω) and φ2
3(ω) are different from φ2(ω), by

choosing f initially to take value 0 at all these points we could have α1 = 1. Suppose

φ2(ω) = φ1 ◦ φi1(ω) where i1 = 2 or 3. Then we could choose f in Equation (3.2.20) such

that f(φ1 ◦ φi2(ω)) = 0, i2 = 2 or 3 and i2 6= i1. If φ2(ω) 6= φ3 ◦ φi3(ω), i3 = 2, 3. Then by

the same argument we get from Equation (3.2.20)

α1α2u1(ω)u2(ω) + α1αi1ui1(ω)u1(φi1(ω)) = α2u2(ω). (3.2.21)

This implies that

α2 ≤ α1(α2 + αi1). (3.2.22)

If i = i1, then adding the Inequalities (3.2.19) and (3.2.22) we get α1 + αi ≥ 1 - A

contradiction.
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If i = 2 and i1 = 3, then Inequality (3.2.22) becomes α2 ≤ α1(α2 + α3) = α1(1 − α1).

Adding this and Inequality (3.2.19) we get α1 + α2 ≤ α1 + α2
2 or α2 ≥ 1 - A contradiction

again.

If i = 3 and i1 = 2, then from Inequality (3.2.22) we have α1 ≥ 1/2. Since αk ≤ 1/2

for all k = 1, 2, 3, we conclude that α1 = 1/2. Now, Inequality (3.2.19) is reduced to

1/4 ≤ α2α3 ≤ α2/2 or α2 ≥ 1/2. This implies that α2 = 1/2 - A contradiction.

Therefore, we get φ2(ω) = φ3 ◦ φi4(ω), i4 = 2 or 3. Choosing a function f such that

f(ω) = f(φ2(ω)) = f(φ3(ω)) = 0 in Equation (3.2.16) we will be left with three points,

that is, φ1 ◦ φi5(ω) (i5 6= i1), φ2 ◦ φi6(ω) (i6 6= i) and φ3 ◦ φi7(ω) (i7 6= i4), i5, i6, i7 = 2 or 3,

and we have 0 on the right hand side. It is also clear that φ3 ◦ φi7(ω) is not equal to any

of ω (because of our assumption), φ2(ω) or φ3(ω). So, it has to be equal to at least one

of φ1 ◦ φi5(ω) or φ2 ◦ φi6(ω). But in all these cases we can choose f large enough to get a

contradiction.

Proof of Step II

Choosing a function f ∈ C(Ω) such that f(φ2(ω)) = 1, f(ω) = f(φ3(ω)) = f(φ2
2(ω)) =

f(φ2 ◦ φ3(ω)) = 0 and then a function f such that f(φ3(ω)) = 1, f(ω) = f(φ2(ω)) =

f(φ2
3(ω)) = f(φ3 ◦φ2(ω)) = 0 in Equation (3.2.16), we will get the following two equations.

α1α2u1(ω)u2(ω) + α2u2(ω)[α1u1(φ2(ω))f(φ1 ◦ φ2(ω)) + α3u3(φ2(ω))f(φ3 ◦ φ2(ω))] +

α3u3(ω)[α1u1(φ3(ω))f(φ1 ◦ φ3(ω)) + α3u3(φ3(ω))f(φ2
3(ω))] = α2u2(ω). (3.2.23)

α1α3u1(ω)u3(ω) + α2u2(ω)[α1u1(φ2(ω))f(φ1 ◦ φ2(ω)) + α2u2(φ2(ω))f(φ2
2(ω))] +

α3u3(ω)[α1u1(φ3(ω))f(φ1 ◦ φ3(ω)) + α2u2(φ3(ω))f(φ2 ◦ φ3(ω))] = α3u3(ω). (3.2.24)

From the above claim we have the following disjoint and exhaustive cases which may occur.

D11 = {ω ∈ D1 : ω = φ2
2(ω) = φ3 ◦ φ2(ω), φ2(ω) = φ2

3(ω) = φ1 ◦ φ2(ω), φ3(ω) =

φ1 ◦ φ3(ω) = φ2 ◦ φ3(ω)},

D12 = {ω ∈ D1 : ω = φ2
2(ω) = φ3 ◦ φ2(ω), φ2(ω) = φ2

3(ω) = φ1 ◦ φ3(ω), φ3(ω) =

φ1 ◦ φ2(ω) = φ2 ◦ φ3(ω)},
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D13 = {ω ∈ D1 : ω = φ2 ◦ φ3(ω) = φ3 ◦ φ2(ω), φ2(ω) = φ2
3(ω) = φ1 ◦ φ2(ω), φ3(ω) =

φ1 ◦ φ3(ω) = φ2
2(ω)},

D14 = {ω ∈ D1 : ω = φ2 ◦ φ3(ω) = φ3 ◦ φ2(ω), φ2(ω) = φ2
3(ω) = φ1 ◦ φ3(ω), φ3(ω) =

φ1 ◦ φ2(ω) = φ2
2(ω)},

D15 = {ω ∈ D1 : ω = φ2
2(ω) = φ2

3(ω), φ2(ω) = φ1 ◦ φ2(ω) = φ3 ◦ φ2(ω), φ3(ω) =

φ1 ◦ φ3(ω) = φ2 ◦ φ3(ω)},

D16 = {ω ∈ D1 : ω = φ2
2(ω) = φ2

3(ω), φ2(ω) = φ1 ◦ φ3(ω) = φ3 ◦ φ2(ω), φ3(ω) =

φ1 ◦ φ2(ω) = φ2 ◦ φ3(ω)}.

Now for any ω ∈ D11, Equation (3.2.16) is reduced to

{α2
1u

2
1(ω) + α2u2(ω)[α2u2(φ2(ω)) + α3u3(φ2(ω))]}f(ω) +

{α1α2u1(ω)u2(ω) + α1α2u1(φ2(ω))u2(ω) + α2
3u3(ω)u3(φ3(ω))}f(φ2(ω)) +

{α1α3u1(ω)u3(ω) + α3u3(ω)[α1u1(φ3(ω)) + α2u2(φ3(ω))]}f(φ3(ω))

= α1u1(ω)f(ω) + α2u2(ω)f(φ2(ω)) + α3u3(ω)f(φ3(ω)). (3.2.25)

Since ω 6= φ2(ω) 6= φ3(ω) 6= ω, choosing appropriate functions we get

α1 ≤ α2
1 + α2(α2 + α3), α2 ≤ 2α1α2 + α2

3 and 1 ≤ 2α1 + α2. (3.2.26)

For ω ∈ D12, we have

{α2
1u

2
1(ω) + α2u2(ω)[α2u2(φ2(ω)) + α3u3(φ2(ω))]}f(ω) +

{α1α2u1(ω)u2(ω) + α3u3(ω)[α1u1(φ3(ω)) + α3u3(φ3(ω))]}f(φ2(ω)) +

{α1α3u1(ω)u3(ω) + α1α2u2(ω)u1(φ2(ω)) + α2α3u3(ω)u2(φ3(ω))}f(φ3(ω))

= α1u1(ω)f(ω) + α2u2(ω)f(φ2(ω)) + α3u3(ω)f(φ3(ω)). (3.2.27)

This implies that

α1 ≤ α2
1 + α2(α2 + α3), α2 ≤ α1α2 + α3(α1 + α3) and

α3 ≤ α1α2 + α2α3 + α3α1. (3.2.28)
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For ω ∈ D13, we have

{α2
1u

2
1(ω) + α2α3[u2(ω)u3(φ2(ω)) + u3(ω)u2(φ3(ω))]}f(ω) +

{α1α2u1(ω)u2(ω) + α1α2u2(ω)u1(φ2(ω)) + α2
3u3(ω)u3(φ3(ω))}f(φ2(ω)) +

{α1α3u1(ω)u3(ω) + α2
2u2(ω)u2(φ2(ω)) + α1α3u3(ω)u1(φ3(ω))}f(φ3(ω))

= α1u1(ω)f(ω) + α2u2(ω)f(φ2(ω)) + α3u3(ω)f(φ3(ω)). (3.2.29)

This implies that

α1 ≤ α2
1 + 2α2α3, α2 ≤ 2α1α2 + α2

3 and α3 ≤ 2α1α3 + α2
2. (3.2.30)

For ω ∈ D14, we have

{α2
1u

2
1(ω) + α2α3[u2(ω)u3(φ2(ω)) + u3(ω)u2(φ3(ω))]}f(ω) +

{α1α2u1(ω)u2(ω) + α3u3(ω)[α1u1(φ3(ω)) + α3u3(φ3(ω))]}f(φ2(ω)) +

{α1α3u1(ω)u3(ω) + α2u2(ω)[α1u1(φ2(ω)) + α2u2(φ2(ω))]}f(φ3(ω))

= α1u1(ω)f(ω) + α2u2(ω)f(φ2(ω)) + α3u3(ω)f(φ3(ω)). (3.2.31)

This implies that

α1 ≤ α2
1 + 2α2α3, α2 ≤ α1α2 + α3(α1 + α3) and

α3 ≤ α1α3 + α2(α1 + α2). (3.2.32)

For ω ∈ D15, we have

{α2
1u

2
1(ω) + α2

2u2(ω)u2(φ2(ω)) + α2
3u3(ω)u3(φ3(ω))}f(ω) +

{α1α2u1(ω)u2(ω) + α2u2(ω)[α1u1(φ2(ω)) + α3u3(φ2(ω))]}f(φ2(ω)) +

{α1α3u1(ω)u3(ω) + α3u3(ω)[α1u1(φ3(ω)) + α2u2(φ3(ω))]}f(φ3(ω))

= α1u1(ω)f(ω) + α2u2(ω)f(φ2(ω)) + α3u3(ω)f(φ3(ω)). (3.2.33)
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This implies that

α1 ≤ α2
1 + α2

2 + α2
3, 1 ≤ 2α1 + α3 and 1 ≤ 2α1 + α2. (3.2.34)

For ω ∈ D16, we have

{α2
1u

2
1(ω) + α2

2u2(ω)u2(φ2(ω)) + α2
3u3(ω)u3(φ3(ω))}f(ω) +

{α1α2u1(ω)u2(ω) + α2α3u2(ω)u3(φ2(ω)) + α1α3u3(ω)u1(φ3(ω))}f(φ2(ω)) +

{α1α3u1(ω)u3(ω) + α1α2u2(ω)u1(φ2(ω)) + α2α3u3(ω)u2(φ3(ω))}f(φ3(ω))

= α1u1(ω)f(ω) + α2u2(ω)f(φ2(ω)) + α3u3(ω)f(φ3(ω)). (3.2.35)

This implies that

α1 ≤ α2
1 + α2

2 + α2
3, α2 ≤ α1α2 + α2α3 + α3α1 and

α3 ≤ α1α2 + α2α3 + α3α1. (3.2.36)

To summarize, we have the following equations.

α1 ≤ α2
1 + α2(α2 + α3), α2 ≤ 2α1α2 + α2

3 and 1 ≤ 2α1 + α2. (3.2.37)

α1 ≤ α2
1 + α2(α2 + α3), α2 ≤ α1α2 + α3(α1 + α3) and α3 ≤ α1α2 + α2α3 + α3α1. (3.2.38)

α1 ≤ α2
1 + 2α2α3, α2 ≤ 2α1α2 + α2

3 and α3 ≤ 2α1α3 + α2
2. (3.2.39)

α1 ≤ α2
1 + 2α2α3, α2 ≤ α1α2 + α3(α1 + α3) and α3 ≤ α1α3 + α2(α1 + α2). (3.2.40)

α1 ≤ α2
1 + α2

2 + α2
3, 1 ≤ 2α1 + α3 and 1 ≤ 2α1 + α2. (3.2.41)

α1 ≤ α2
1 + α2

2 + α2
3, α2 ≤ α1α2 + α2α3 + α3α1 and α3 ≤ α1α2 + α2α3 + α3α1. (3.2.42)

In the above six equations, it is easy to observe that αi = 1/3, i = 1, 2, 3 is the only

solution.
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Proof of Step III

In this step we will find conditions on ui(ω) and ui(φj(ω)) for i = 1, 2, 3 and j = 2, 3. We

substitute αi = 1/3 in Equations (3.2.25), (3.2.27), (3.2.29), (3.2.31), (3.2.33) and (3.2.35)

and we choose three sets of functions for each equation. Firstly, a function f ∈ C(Ω)

such that f(ω) = 1, f(φ2(ω)) = f(φ3(ω)) = 0. Then a function f ∈ C(Ω) such that

f(φ2(ω)) = 1, f(ω) = f(φ3(ω)) = 0 and finally a function f ∈ C(Ω) such that f(φ3(ω)) =

1, f(ω) = f(φ2(ω)) = 0. Moreover, by observing that ui(ω) and ui(φj(ω)) lie on the unit

circle and all the points on the circle are extreme points we get the following conditions on

ui(ω) and ui(φj(ω)) where i = 1, 2, 3 and j = 2, 3.

For ω ∈ D11 we get

u1(ω) = u2(ω)u2(φ2(ω)) = u2(ω)u3(φ2(ω)) = 1, u1(φ2(ω)) = 1,

u3(ω)u3(φ3(ω)) = u2(ω) and u1(φ3(ω)) = u2(φ3(ω)) = 1.

For ω ∈ D12 we get

u1(ω) = u2(ω)u2(φ2(ω)) = u2(ω)u3(φ2(ω)) = 1, u3(ω)u1(φ3(ω))

= u3(ω)u3(φ3(ω)) = u2(ω) and u2(ω)u1(φ2(ω)) = u3(ω), u2(φ3(ω)) = 1

For ω ∈ D13 we get

u1(ω) = u2(ω)u3(φ2(ω)) = u3(ω)u2(φ3(ω)) = 1, u1(φ2(ω)) = 1,

u3(ω)u3(φ3(ω)) = u2(ω) and u2(ω)u2(φ2(ω)) = u3(ω), u1(φ3(ω)) = 1.

For ω ∈ D14 we get

u1(ω) = u2(ω)u3(φ2(ω)) = u3(ω)u2(φ3(ω)) = 1, u3(ω)u1(φ3(ω)) =

u3(ω)u3(φ3(ω)) = u2(ω) and u2(ω)u1(φ2(ω)) = u2(ω)u2(φ2(ω)) = u3(ω).

For ω ∈ D15 we get

u1(ω) = u2(ω)u2(φ2(ω)) = u3(ω)u3(φ3(ω)) = 1,

48



3.2. Proof of results

u1(φ2(ω)) = u3(φ2(ω)) = 1 and u1(φ3(ω)) = u2(φ3(ω)) = 1.

For ω ∈ D16 we get

u1(ω) = u2(ω)u2(φ2(ω)) = u3(ω)u3(φ3(ω)) = 1, u3(φ2(ω)) = 1,

u3(ω)u1(φ3(ω)) = u2(ω) and u2(ω)u1(φ2(ω)) = u3(ω), u2(φ3(ω)) = 1.

Thus, the proof of the Lemma is complete.

We will need one more lemma to complete the proof of Theorem 3.1.2.

Lemma 3.2.10. With the assumption in Theorem 3.1.2, one and only one of the following

conditions is possible: (In all the cases i, j, k = 1, 2, 3)

(i) Ω = Bi.

(ii) Ω = A ∪Bi.

(iii) Ω = A ∪Bi ∪ Ci.

(iv) Ω = Ci.

(v) Ω = A ∪ Ci.

(vi) Ω = Dij.

(vii) Ω = A ∪Dij.

(viii) Ω = A ∪Dij ∪Dkl, l = 1, . . . , 6.

(ix) Ω = A ∪D1i ∪D2j ∪D3k.

Proof. Suppose that Ω = A∪B1 ∪B2 ∪B3. Let ω be a limit point of Bi, i = 1, 2, 3. Then

there exists a net ωα ∈ Bi such that ωα → ω. Since ωα ∈ Bi, we have ωα = φj(ωα) =

φk(ωα) 6= φi(ωα). This implies that ω = φj(ω) = φk(ω) and hence ω ∈ A ∪Bi.

We now consider the following cases:
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(a) If all Bi’s are closed, then by the connectedness of Ω and observing that A is closed,

we have Ω = A, Ω = B1, Ω = B2 or Ω = B3. Since Ω 6= A, we conclude that Ω = B1,

Ω = B2 or Ω = B3. Thus, (i) is proved.

(b) If only one of the Bi’s, say Bj, is closed. Then as we have shown earlier, any limit

point of Bj belongs to A ∪ Bj. Thus, A ∪ Bi ∪ Bk is closed. Hence, by the connectedness

of Ω, either Ω = Bj or Ω = A ∪Bi ∪Bk.

Suppose that B3 is closed and Ω = A ∪ B1 ∪ B2. Rest of the cases are exactly similar.

Since B1 is not closed, there exists a net ωα ∈ B1 such that ωα → ω and ω ∈ A. This

implies that φ1(ω) = φ2(ω) = φ3(ω).

If ω ∈ A1, then u1(ω) = u2(ω) = u3(ω) = 1 and φ1(ω) = ω. Since ωα ∈ B1, we have

from Equation (3.2.7)

α2
1u1(ωα)u1(φ1(ωα)) + [α2u2(ωα) + α3u3(ωα)]2 = α2u2(ωα) + α3u3(ωα). (3.2.43)

Noting that each of u1, u2 and u3 are continuous and taking the limit both sides we get

α2
1u1(ω)u1(φ1(ω)) + [α2u2(ω) + α3u3(ω)]2 = α2u2(ω) + α3u3(ω). (3.2.44)

Since ui(ω) = 1, i = 1, 2, 3 and φ1(ω) = ω, we have α2
1 + [α2 + α3]2 = α2 + α3 or α1 = 1/2.

If ω ∈ A2, then α1u1(ω) + α2u2(ω) + α3u3(ω) = 0. Since ωα ∈ B1, Equation (3.2.9)

shows that

α2u2(ωα) + α3u3(ωα) + α2u2(φ1(ωα)) + α3u3(φ1(ωα)) = 1. (3.2.45)

Taking limits we get

α2u2(ω) + α3u3(ω) + α2u2(φ1(ω)) + α3u3(φ1(ω)) = 1 (3.2.46)

or − α1u1(ω)− α1u1(ω) = 1. This implies that α1 = 1/2.

Similar argument for B2 will give us α2 = 1/2 - A contradiction.

Thus, Ω 6= A ∪B1 ∪B2.

(c) If two of the Bi’s, say Bj and Bk, are closed, then we will have Ω = Bj, Ω = Bk or

Ω = A ∪Bi. Thus, (ii) is proved.
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Suppose Ω = A ∪ Bi. Then as Bi is not closed, there exists a net ωα ∈ Bi such that

ωα → ω and ω ∈ A. Proceeding as above we conclude that αi = 1/2 and from Equation

(3.2.9) and (3.2.7) we will get uj(ω) = uk(ω) = uj(φi(ω)) = uk(φi(ω)) = ui(ω)ui(φi(ω)) = 1

for all ω ∈ Bi.

(d) Suppose that no Bi is closed, then Ω = A ∪ B1 ∪ B2 ∪ B3. Proceeding in the same

way as in (b), we can see that this case is also not possible.

From Lemma 3.2.8 one can see that none of C1, C2 or C3 can occur together. Suppose

that Ω = A ∪Bi ∪Bj ∪Bk ∪ Ci. Lemma 3.2.8 also implies that αi = 1/2.

We claim that Bj, Bk and A ∪ Bi ∪ Ci are closed. To see the claim, suppose to the

contrary that Bj is not closed. Then there exists a net ωα ∈ Bj such that ωα → ω and

ω ∈ A. An argument similar to case (b) above will give us αj = 1/2, which is a contradiction

since αi = 1/2.

Similarly, one can show that Bk is closed.

Now, let ω be a limit point Ci. Then there exists a net ωα ∈ Ci such that ωα → ω.

Since ωα ∈ Ci, ω = φi(ωα) 6= φj(ωα) = φk(ωα). This implies that ω = φi(ω), φj(ω) = φk(ω)

and hence ω ∈ A ∪ Ci. We have seen earlier that limits points of Bi belong to A ∪ Bi.

Therefore, A ∪ Bi ∪ Ci is also closed. From connectedness of Ω we conclude that Ω = Bj,

Ω = Bk or A ∪Bi ∪ Ci.

Let Ω = A ∪ Bi ∪ Ci. If both Bi and Ci are closed, then Ω = Bi or Ω = Ci. If only Bi

is closed, then Ω = Bi or Ω = A ∪ Ci. If only Ci is closed, then Ω = Ci or Ω = A ∪ Bi. If

neither Bi nor Ci is closed, then Ω = A ∪Bi ∪ Ci.

Suppose Ω = A ∪ Bi ∪ Ci, then as αi = 1/2, from Equation (3.2.9) and (3.2.7) we will

get uj(ω) = uk(ω) = uj(φi(ω)) = uk(φi(ω)) = ui(ω)ui(φi(ω)) = 1 for all ω ∈ Bi.

This proves assertions (iii)− (v).

It is clear from Lemma 3.2.8 and 3.2.9 that for i = 1, 2, 3 Ci cannot occur with Di. We

also observe that any limit point of Di belongs to A ∪ Di. Moreover, for fixed i = 1, 2, 3

no two or more Dij, j = 1, . . . , 6 can occur simultaneously.

Suppose that Ω = A ∪ Bi ∪D1j ∪D2k ∪D3l, where i = 1, 2, 3 and j, k, l = 1, 2, . . . , 6.

Lemma 3.2.9 shows that α1 = α2 = α3 = 1/3.
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Suppose that neither Bi nor any one of Dmn’s is closed, where m = 1, 2, 3 and n = j, k, l.

Then we will get αi = 1/2 by an argument similar to case (b) above and this will lead us

to a contradiction. So, no Bi can occur with any of the Dmn’s and hence either Bi or all

of Dmn’s must be closed.

If Bi is not closed, then we will have Ω = Dmn for some m and n. Hence, assertion (vi)

is proved.

If Bi is closed, then either Ω = Bi or Ω = A∪D1j∪D2k∪D3l. If Ω = A∪D1j∪D2k∪D3l

and some Dmn’s are closed, then by arguing in a similar way we will get cases (vii)− (ix).

The proof of the Lemma is complete.

Completion of the proof of Theorem 3.1.2

In any of the cases (i)− (v) in Lemma 3.2.10, we have seen that

uj(ω) = uk(ω) = uj(φi(ω)) = uk(φi(ω)) = ui(ω)ui(φi(ω)) = 1 for any ω ∈ Bi and

ui(ω) = ui(φj(ω)) = 1, uj(ω) = uk(ω), uj(φj(ω)) = uk(φj(ω)) and uj(ω)uj(φj(ω)) = 1

for any ω ∈ Ci. Moreover, αi = 1/2.

Therefore, we have Tjf(ω) = Tkf(ω) for all f ∈ C(Ω), ω ∈ Bi ∪ Ci. Thus, we have

P =
Ti+Tj

2
.

Therefore, the proof of Theorem 3.1.2 (a) is complete.

It remains to consider the case when Ω = A∪D1i ∪D2j ∪D3k. We further assume that

i, k ≤ 4, j ≥ 5. The remaining cases for the conditions (vi)− (viii) are similar.

Our aim is to show that there exists a surjective isometry T on C(Ω) such that T 3 = I

and P = I+T+T 2

3
. Since P = 1

3
(T1 + T2 + T3) is a projection, we have

P =
1

9
(T 2

1 + T 2
2 + T 2

3 + T1T2 + T2T1 + T1T3 + T3T1 + T2T3 + T3T2).

Using the conditions obtained earlier on ui(ω)’s and ui(φj(ω)) we see that for any ω ∈ D11;

T 2
1 f(ω) = T 2

2 f(ω) = f(ω), T 2
3 f(ω) = T2f(ω), T1T2f(ω) = T2T1f(ω) = T2f(ω),

T1T3f(ω) = T3T1f(ω) = T3T2f(ω) = T3f(ω), T2T3f(ω) = f(ω).
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That is,

Pf(ω) =

(
I + T3 + T 2

3

3

)
f(ω) and T 3

3 f(ω) = f(ω).

Similarly, if ω ∈ D12, D13 or D14 we have

Pf(ω) =

(
I + T3 + T 2

3

3

)
f(ω) and T 3

3 f(ω) = f(ω).

If ω ∈ D15 or D16, we get

Pf(ω) =

(
I + T2 + T3

3

)
f(ω) =

(
I + T2T3 + (T2T3)2

3

)
f(ω)

and (T2T3)3f(ω) = f(ω). The cases of ω ∈ D2 or D3 is similar.

We now define

u(ω) =



u1(ω) if ω ∈ A1

u3(ω) if ω ∈ D1i

u1(ω)u3(φ1(ω)) if ω ∈ D2j

u1(ω) if ω ∈ D3k

and

φ(ω) =



φ1(ω) if ω ∈ A1

φ3(ω) if ω ∈ D1i

φ3 ◦ φ1(ω) if ω ∈ D2j

φ1(ω) if ω ∈ D3k

Define Tf(ω) = u(ω)f(φ(ω)). We have seen earlier that any limit point of Dij belong

to A∪Dij, it follows that u is continuous and φ is a homeomorphism. Hence, the proof of

Theorem 3.1.2 (b) is complete. �
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4
Structure of Generalized 3-circular

Projections on Cn and on Some

Spaces of Matrices

In this chapter we will find the structures of generalized 3-circular projections on Cn with

symmetric norm, and on some spaces of matrices with unitarily invariant norm and unitary

congruence invariant norm.

Let G be a closed subgroup of G(X). We recall that a norm ‖ · ‖ on a Banach space X

is said to be G-invariant if

‖g(x)‖ = ‖x‖ ∀ g ∈ G, x ∈ X.

Most of the contents of this chapter are from [3].

4.1 Symmetric norms

We start with the following lemma.
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Lemma 4.1.1. Let P0 + λ1P1 + λ2P2 = T , where T ∈ G(X) and λ1, λ2, P1 and P2 are as

in Definition 1.2.1. If P1 is a bi-circular projection, then so is P0.

Proof. We first note that if P1 is a bi-circular projection, then so is I − P1 = P0 + P2. As

every bi-circular projection is hermitian, eiθ(P0+P2) is an isometry for all θ ∈ R. Suppose

there exists 0 6= x ∈ X such that ‖eiθP0x‖ < ‖x‖. Then we have

‖x‖ = ‖eiθ(P0+P2)x‖ = ‖eiθP2eiθP0x‖ ≤ ‖eiθP0x‖ < ‖x‖,

a contradiction.

In this section we will find the structures of generalized 3-circular projections on Cn

with a symmetric norm.

The isometry group of a given symmetric norm (see Theorem 1.2.23) is the group of

generalized permutation matrices, that is, matrices of the form T = DR, where D is a

diagonal matrix with entries from the unit circle and P is a permutation matrix. We will

denote this group by G.

Remark 4.1.2. Let R be a permutation matrix such that the permutation associated with

R fixes m elements, m ≥ 0, and has k disjoint cycles of lengths n1, n2, . . . , nk. Let πj be

the cycle (1 2 . . . j−1 j) and Rj the permutation matrix for the cycle πnj , j = 1, 2, . . . , k.

Then R is permutationally similar to R1 ⊕R2 ⊕ · · · ⊕Rk ⊕ Im.

Theorem 4.1.3. Let ‖ · ‖ be a symmetric norm on Cn and P0 a generalized 3-circular

projection. Then one and only one of the following assertions holds:

(a) P0 is a bi-circular projection.

(b) There exist m ≥ 0, k ≥ 1, projections P0,i, i = 0, . . . , k such that P0 is permuta-

tionally similar to P0,1 ⊕ P0,2 ⊕ · · · ⊕ P0,k ⊕ P0,0, where

P0,i =
1

3


1 di1 di1di2

di2di3 1 di2

di3 di1di3 1

 and P0,0 = diag(p1, p2, . . . , pm)

with pj ∈ {0, 1} for all j = 1, 2, . . . ,m and di1di2di3 = 1.
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4.1. Symmetric norms

Proof. Suppose P0 + λ1P1 + λ2P2 = T where λi and Pi, i = 1, 2 are as in Definition

1.2.1. Since the isometry group for the symmetric norm is G, T = DR where D is

a diagonal matrix whose elements are of unit modulus and R is a permutation matrix.

By Remark 4.1.2, R is permutationally similar to R1 ⊕ R2 ⊕ · · · ⊕ Rk ⊕ Im. We write

D = D1 ⊕D2 ⊕ · · · ⊕Dk ⊕D0 accordingly. Then T will be permutationally similar to

D1R1 0 · · · 0

0 D2R2 · · · 0
...

...
. . .

...

0 · · · DkRk 0

0 0 · · · D0


(4.1.1)

By Lemma 3.2.4, the eigenvalues of T are {1, λ1, λ2} which is the union of eigenvalues of

DiRi, i = 1, 2, . . . , k and D0. We also note that DiRi has ni distinct eigenvalues.

Suppose k = 0. Then T = D and from Lemma 3.2.4,

P0 =
(D − λ1I)(D − λ2I)

(1− λ1)(1− λ2)
.

Hence, P0 is a diagonal matrix whose elements are 0 or 1. This implies that for any

λ ∈ T \ {1}, P0 + λ(I −P ) is a diagonal matrix with entries 1 or λ and hence an isometry.

Thus, P0 is a bi-circular projection and assertion (a) follows.

Suppose k > 0. Then Equation 3.2.1 implies that

(DiRi − Ini)(DiRi − λ1Ini)(DiRi − λ2Ini) = 0

∀ i = 1, 2, . . . , k and

(D0 − Im)(D0 − λ1Im)(D0 − λ2Im) = 0.

Hence, the eigenvalues of DiRi and D0 are {1, λ1, λ2}. We again note that the eigenvalues

of DiRi, i = 1, . . . , k are distinct. Therefore, we have n1 = n2 = · · · = nk = 3. Suppose

Di = diag(di1, di2, di3). Then we have

DiRi =


di1 0 0

0 di2 0

0 0 di3




0 1 0

0 0 1

1 0 0
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Chapter 4. Structure of Generalized 3-circular Projections

=


0 di1 0

0 0 di2

di3 0 0


Since tr(DiRi) = 0, we have 1+λ1 +λ2 = 0. Thus, λ1 and λ2 are the cube roots of identity.

As T is permutationally similar to the matrix displayed in Equation 4.1.1 and P0 =

I+T+T 2

3
, we obtain P0 is permutationally similar to P0,1 ⊕ P0,2 ⊕ · · · ⊕ P0,k ⊕ P0,0; where

P0,i =
I3 +DiRi + (DiRi)

2

3
,

i = 1, 2, . . . , k and

P0,0 =
Im +D0 +D2

0

3
.

This implies that

P0,i =
1

3


1 di1 di1di2

di2di3 1 di2

di3 di1di3 1

 and P0,0 = diag(p1, p2, . . . , pm).

Here, pj ∈ {0, 1} for all j = 1, 2, · · · ,m.

Moreover, det(DiRi) = di,1di,2di,3 = 1.

Thus, the proof of assertion (b) is complete.

4.2 Unitarily invariant norms

In this section we will characterize generalized 3-circular projections on Mm,n(C) with a

unitarily invariant norm.

From Theorem 1.2.25 we know that if m 6= n, then any isometry T is of the form

T (A) = UAV where U ∈ U(Cm) and V ∈ U(Cn). If m = n, then an isometry T on Mn(C)

has the form either T (A) = UAV or T (A) = UAtV where U , V are unitaries in Mn(C)

and At denotes the transpose of a matrix A.

Remark 4.2.1. Let P0 be a generalized 3-circular projection. Then ∃ λ1, λ2, P1 and

P2 as in Definition 1.2.1 such that P0 + λ1P1 + λ2P2 = T . By Lemma 3.2.4, T has
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spectrum {1, λ1, λ2}. Let us assume that U has eigenvalues u1, . . . , um and V has eigen-

values v1, . . . , vn. If T (A) = UAV , then identifying Mm,n(C) as Rm ⊗ Rn, we see that

T (x⊗ yt) = Ux⊗ ytV . Thus, T has eigenvalues uivj, i = 1, 2, . . . ,m; j = 1, 2, . . . , n.

Theorem 4.2.2. Let ‖ · ‖ be a unitarily invariant norm on Mm,n(C) and P0 a generalized

3-circular projection such that the isometry associated with it is of the form A 7−→ UAV

for some U ∈ U(Cm) and V ∈ U(Cn). Suppose λ1 + λ2 = −1, then there exist Ri =

R∗i = R2
i in Mm(C) and Si = S∗i = S2

i in Mn(C), i = 0, 1, 2 such that P0 has the form

A 7−→ R0AS0 +R1AS1 +R2AS2.

Proof. Let P0 + λ1P1 + λ2P2 = T where λ1, λ2, P1 and P2 are as in Definition 1.2.1. We

first note that 1 + λ1 + λ2 = 0 which implies that λ1 and λ2 are cube roots of unity. By

Lemma 3.2.4, T has spectrum {1, ω, ω2}. Assume that U has eigenvalues u1, . . . , um and V

has eigenvalues v1, . . . , vn. Then by Remark 4.2.1, T has eigenvalues uivj, i = 1, 2, . . . ,m;

j = 1, 2, . . . , n. Without loss of generality we may assume that u1 = v1 = 1. Thus, the

spectrum of U and V is a subset of {1, ω, ω2}. Hence, we have U3 = I and V 3 = I. Let

Ri =
I + µiU + µ2

iU
2

3
and Si =

I + µiV
∗ + µ2

i (V
∗)2

3
,

where i = 0, 1, 2; µ0 = 1, µ1 = ω and µ2 = ω2. So, we have

R∗i =
I + µiU

∗ + µ2
i (U

2)∗

3
=
I + µ2

iU
2 + µiU

3
= Ri,

because U3 = I and µi’s are cube roots of unity.

Further, we have

R2
i =

I + µ2
iU

2 + µ4
iU

4 + 2µiU + 2µ2
iU

2 + 2µ3
iU

3

9

=
3I + 3µiU + 3µ2

iU
2

9
(using U3 = I, µ3

i = 1)

= Ri.

Similarly, we will get Si = S∗i = S2
i .

Finally, we observe that

P0(A) = R0AS0 +R1AS1 +R2AS2.
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Theorem 4.2.3. Let ‖ · ‖ be a unitarily invariant norm on Mm,n(C) and P0 a generalized

3-circular projection such that the isometry associated with P0 is of the form A 7−→ UAV

for some U ∈ U(Cm) and V ∈ U(Cn). Suppose λ1 + λ2 6= −1, then one and only one of

following assertions holds:

(a) There exists R ∈ Mn(C) with R = R∗ = R2 such that P0(A) = AR, or there

exists S ∈ Mm(C) with S = S∗ = S2 such that P0(A) = SA. In both cases, P0 is a

bi-circular projection.

(b) λ2
i = λj, i, j = 1, 2 and i 6= j;

(b1) λ1 is of order p and λ2 is of order q with p = 2q. In this case we have one of

the following conditions:

(i) P0 is a bi-circular projection.

(ii) P1 is generalized bi-circular projection and (λ1)p/2 = (λ2)q/2 = −1. Moreover,

P0 has the form

A 7−→ λ1A

2(λ1 − 1)
+

UAV

1− λ2
1

+
λ1U

qAV q

2(1 + λ1)
.

(b2) λi =
√
λj and λ1, λ2 are of order p, where p is an odd integer greater or equal

to 5. Moreover, there exist Ri = R∗i = R2
i in Mm(C) and Si = S∗i = S2

i in Mn(C)

such that

P0(A) =

p−1∑
i=0

RiASi,

where i = 0, 1, . . . , p− 1.

(c) λ1λ2 = 1 and P0 will have the same form as in (b2).

Proof. Let P0 + λ1P1 + λ2P2 = T where λ1, λ2, P1 and P2 are as in Definition 1.2.1.

Lemma 3.2.4 implies that T has spectrum {1, λ1, λ2}. Proceeding in the same way as in

the beginning of proof of Theorem 4.2.2 we can say that the spectra of U and V are any

one of the following sets:

{1}, {1, λ1}, {1, λ2} or {1, λ1, λ2}.

So, we will have the following three cases.
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Case I

Suppose the spectrum of U is {1}.

If the spectrum of V is {1}, {1, λ1} or {1, λ2} then the spectrum of T is {1}, {1, λ1} or

{1, λ2} respectively, a contradiction.

Therefore, the spectrum of V will be {1, λ1, λ2}. In this case, U = I and T (A) = AV .

From Lemma 3.2.4, we have

P0A =
(T − λ1)(T − λ2I)A

(1− λ1)(1− λ2)
.

We define

R =
(V − λ1I)(V − λ2I)

(1− λ1)(1− λ2)
.

Then we obtain P0(A) = AR. We claim that R = R∗. To see the claim, from the expression

of R we have

V 2 = (1− λ1)(1− λ2)R + (λ1 + λ2)V − λ1λ2I. (4.2.1)

Equation (4.2.1) implies that

(V ∗)2 = (V 2)∗ = (1− λ1)(1− λ2)R∗ + (λ1 + λ2)V ∗ − λ1λ2I. (4.2.2)

From Equation (3.2.1), we have (V − I)(V − λ1I)(V − λ2I) = 0, that is,

V 3 − (1 + λ1 + λ2)V 2 + (λ1 + λ2 + λ1λ2)V − λ1λ2I = 0.

Multiplying both sides by V ∗ we get

V 2 − (1 + λ1 + λ2)V + (λ1 + λ2 + λ1λ2)I − λ1λ2V
∗ = 0. (4.2.3)

Multiplying again by V ∗ we have

V − (1 + λ1 + λ2)I + (λ1 + λ2 + λ1λ2)V ∗ − λ1λ2(V ∗)2 = 0. (4.2.4)

Adding Equations (4.2.3) and (4.2.4), we get

V 2 − (λ1 + λ2)V + (λ1λ2 − 1)I + (λ1 + λ2)V ∗ = λ1λ2(V ∗)2.

61



Chapter 4. Structure of Generalized 3-circular Projections

Substituting V 2 and (V ∗)2 from Equations (4.2.1) and (4.2.2), we get R = R∗. Moreover,

as P0 is a projection we get R2 = R.

We observe that for any µ ∈ T \ {1},

[P0 + µ(I − P0)]A = P0A+ µ(A− P0A)

= AR + µ(A− AR)

= A[R + µ(I −R)]

= AW,

where W = R + µ(I − R). To show that P0 + µ(I − P0) is an isometry, we need to show

that W is a unitary. We consider

WW ∗ = [R + µ(I −R)][R∗ + µ(I −R∗)]

= [R + µ(I −R)][R + µ(I −R)]

= R + I −R

= I = W ∗W.

Therefore, P0 is a bi-circular projection.

Hence, assertion (a) is proved.

Case II

Suppose the spectrum of U is {1, λ1}.

The case in which the spectrum of U is {1, λ2} is exactly similar.

So, the choices of spectrum of V are {1, λ1}, {1, λ2} or {1, λ1, λ2}.

(A) If the spectrum of V is {1, λ1}, then T will have spectrum {1, λ1, λ
2
1}. This implies

that λ2
1 = λ2.

Let p and q be the order of λ1 and λ2 respectively. Then we have λ2q
1 = λq2 = 1 and

λp2 = λ2p
1 = 1. This implies that p divides 2q and q divides p or 2q = k1p and p = k2q for

some positive integers k1 and k2. Thus, we have k1k2 = 2. So, either k1 = 1, k2 = 2 or

k1 = 2, k2 = 1.

If k1 = 1 and k2 = 2 we get p = 2q.
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If k1 = 2 and k2 = 1 we get p = q.

Suppose p = 2q. Then we have

T q = P0 + λq1P1 + λq2P2

= P0 + λq1P1 + P2.

It follows that P1 is a GBP. Proposition 1.2.26 implies that P1 is either a bi-circular

projection or λq1 = −1.

If P1 is a bi-circular projection, then by Remark 4.1.1 we conclude that P0 is also a

bi-circular projection.

Hence, assertion (i) is proved.

If P1 is not a bi-circular projection, then we have λq1 = −1.

Suppose λ1 =
√
λ2, then we get (λ2)q/2 = −1.

Suppose λ1 = −
√
λ2, then we get (−1)q(λ2)q/2 = −1. This shows that (λ2)q/2 = −1,

otherwise if (λ2)q/2 = 1 then we will get λq1 = 1, which is a contradiction.

So, in both cases we have (λ2)q/2 = −1. Since q = p/2 we also have λ
p/2
1 = −1.

For the form of P0 we consider the following three equations,

P0 − P1 + P2 = T q

P0 + λ1P1 + λ2P2 = T

P0 + P1 + P2 = I.

Eliminating P1 and P2 we get

P0 =
λ1I

2(λ1 − 1)
+

T

1− λ2
1

+
λ1T

q

2(1 + λ1)
. (4.2.5)

Hence, assertion (ii) is proved.

Suppose p = q and λ1 = ±
√
λ2.

If λ1 = −
√
λ2, then we have λp1 = (−

√
λ2)p = 1 or (−1)p(λ2)p/2 = 1. This shows that p

is odd, otherwise (λ2)p/2 = 1, a contradiction because the order of λ2 is p. Hence, we get

(λ2)p/2 = −1. It follows that λp1 = −1, a contradiction since the order of λ1 is p.
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Chapter 4. Structure of Generalized 3-circular Projections

If λ1 =
√
λ2, then we have λp1 = (

√
λ2)p = (λ2)p/2 = 1. This again implies that that p

is odd. Since, we have λ1 + λ2 6= −1 we conclude that p > 3. As the order of λ1 is p, we

have Up = I and V p = I. Let

Ri =

p−1∑
j=0

µjiU
j

p
and Si =

p−1∑
j=0

µi
jV j

p
,

where i = 0, 1, . . . , p− 1 and µ0 = 1, µ1, . . . , µp−1 are the p distinct roots of unity. We also

observe that Ri = R∗i = R2
i and Si = S∗i = S2

i . Thus, we conclude that P0 is of the form

A 7−→
p−1∑
i=0

RiASi.

Hence, assertion (b2) is proved.

(B) If the spectrum of V is {1, λ2}, then T will have spectrum

{1, λ1, λ2, λ1λ2}. This implies that λ1λ2 = 1 and hence λ1 and λ2 are of the same order.

Now, we have

T = P0 + λ1P1 + λ1P2

=⇒ λ1T = P2 + λ1P0 + λ2
1P1.

Because λ1T is again an isometry, we are reduced to the previous case and we get assertion

(c).

(C) If the spectrum of V is {1, λ1, λ2}, then T will have spectrum

{1, λ1, λ2, λ1λ2, λ
2
1}. This implies that λ1λ2 = 1 and λ2

1 = λ2. Therefore, we have λ3
1 =

λ3
2 = 1, a contradiction since λ1 + λ2 6= −1.

Case III

Suppose that the spectrum of U is {1, λ1, λ2}.

(A) If the spectrum of V is {1}, then V = I. We proceed in the same way as in Case

I to get S ∈ Mm(C) such that S = S∗ = S2 and P0A = SA. Thus, P0 is a bi-circular

projection.

(B) If the spectrum of V is {1, λ1} or {1, λ2}, then we proceed exactly as the case in

which the spectrum of U is {1, λ1} and of V is {1, λ1, λ2}.
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(C) If the spectrum of V is {1, λ1, λ2}, then the spectrum of T will be {1, λ1, λ2, λ1λ2, λ
2
1,

λ2
2}. Thus, we have λ1λ2 = 1, λ2

1 = λ2 and λ2
2 = λ1. Hence, 1 = λ1λ2 = λ1λ

2
1 = λ3

1. Simi-

larly, we have λ3
2 = 1. Thus, we get λ1 and λ2 are cube roots of unity, a contradiction.

We now give an example to demonstrate assertion (b1)(ii) of the above theorem.

Example 4.2.4. We start with a GBP P1 on M3(C) with a unitarily invariant norm such

that P1 = I+S
2

. Here, S is an isometry on M3(C) given by S(A) = UAV , where

U =


1 0 0

0 −1 0

0 0 1

 and V =


1 0 0

0 1 0

0 0 −1

 .

For A = (aij) ∈M3(C), we define projections P0 and P2 as follows:

P0(A) =


0 0 0

a21 a22 0

0 0 0

 , P2(A) =


0 0 a13

0 0 0

0 0 a33

 .

Then we have P0 ⊕ P1 ⊕ P2 = I.

Let T be an isometry on M3(C) defined as T (A) = WAZ, where

W =


iω 0 0

0 1 0

0 0 iω

 and Z =


1 0 0

0 1 0

0 0 iω

 .

Then we have T = P0 + λ1P1 + λ2P2, where λ1 = iω and λ2 = −ω2.
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Theorem 4.2.5. Let ‖ · ‖ be a unitarily invariant norm on Mn(C) and P0 a generalized

3-circular projection such that the isometry associated with P0 is of the form A 7−→ UAtV

for some U, V ∈ U(Cn). Then one and only one of the following assertions holds:

(a) λ2
1+λ2

2 = −1 and there exist Ri = R∗i = R2
i and Si = S∗i = S2

i in Mn(C), i = 0, 1, 2

such that P0 has the form A 7−→ R0AS0 +R1AS1 +R2AS2.

(b) λ4
i = λ2

j , i, j = 1, 2 and i 6= j;

(b1) λ2
1 is of order p and λ2

2 is of order q with p = 2q. In this case, we have one of

the following conditions:

(i) P0 is a bi-circular projection.

(ii) P1 is generalized bi-circular projection and λp1 = λq2 = −1. Moreover, P0 has the

form

A 7−→ λ2
1A

2(λ2
1 − 1)

+
UV tAU tV

1− λ4
1

+
λ2

1(UV t)qA(U tV )q

2(1 + λ2
1)

.

(b2) λ2
i = λj; λ

2
1 and λ2

2 are of order p, where p is an odd integer greater or equal to

5. Moreover, there exist Ri = R∗i = R2
i and Si = S∗i = S2

i in Mn(C) such that

P0(A) =

p−1∑
i=0

RiASi,

where i = 0, 1, . . . , p− 1.

Proof. Let P0 + λ1P1 + λ2P2 = T where λ1, λ2, P1 and P2 are as in Definition 1.2.1. Now,

as T (A) = UAtV we have

T 2(A) = P0(A) + λ2
1P1(A) + λ2

2P2(A) = UV tAU tV.

By Lemma 3.2.4, the spectrum of T 2 is {1, λ2
1, λ

2
2}. Let X = UV t and Y = U tV . We

observe that X and Y are unitary matrices. Since eigenvalues of X and X t = V U t are

same, and y = U tV , X, Y have same eigenvalues. Let the eigenvalues of X be ν1, ν2, . . . , νn.

Then the eigenvalues of T 2 is νiνj, 1 ≤ i, j ≤ n. Without loss of generality we can assume

that ν3 = 1. Hence, the spectrum of X is a subset of {1, λ2
1, λ

2
2}. We assume ν1 = λ2

1 and

ν2 = λ2
2.
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Suppose ν1 + ν2 = −1. Then the the spectrum of X is a subset of {1, ω, ω2} and hence

we have X3 = I and Y 3 = I. Let

Ri =
I + µiX + µ2

iX
2

3
and Si =

I + µiY
∗ + µ2

i (Y
∗)2

3
,

where i = 0, 1, 2; µ0 = 1, µ1 = ω and µ2 = ω2. It can be easily verified that Ri = R∗i = R2
i

and Si = S∗i = S2
i . Also, we have

P0(A) = R0AS0 +R1AS1 +R2AS2

and assertion (a) follows.

Now, we suppose that ν1 + ν2 6= −1. Then the spectrum of X will be one of the

following:

{1}, {1, ν1}, {1, ν2} or {1, ν1, ν2}.

If the spectrum of X is {1}, then X is the identity matrix and so is Y . It follows that T 2

is the identity operator and λ2
1 = 1 = λ2

2. This implies that λ1 = λ2 = −1, a contradiction.

So, we consider the following two cases.

Case I

Suppose the spectrum of X is {1, ν1}.

The case in which the spectrum of X is {1, ν2} is exactly similar.

So, the spectrum of T 2 is {1, ν1, ν
2
1}. This implies that ν2

1 = ν2. We proceed in the

same way as in part (A), Case II of Theorem 4.2.3. We see that if ν1 and ν2 are of different

order, then either P0 is a bi-circular projection or P1 is a GBP. If P1 is a GBP, and the

order of ν1 and ν2 is p and q respectively, then we have p = 2q. Moreover, P0 will be of

the form

A 7−→ ν1A

2(ν1 − 1)
+
XAY

1− ν2
1

+
ν1X

qAY q

2(1 + ν1)
.

Hence, assertion (b1) follows.

If ν1 and ν2 are of same order, say p, then by arguments similar to part (A), Case II of

Theorem 4.2.3, we can show that ν1 =
√
ν2 and p is an odd integer greater than or equal
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to 5, since ν1 + ν2 6= −1. In this case we have Xp = I and Y p = I. Let

Ri =

p−1∑
j=0

µjiX
j

p
and Si =

p−1∑
j=0

µi
jY j

p
,

where i = 0, 1, . . . , p− 1 and µ0 = 1, µ1, . . . , µp−1 are the p distinct roots of unity. Clearly,

we have that Ri = R∗i = R2
i and Si = S∗i = S2

i and we conclude that P0 is of the form

A 7−→
p−1∑
i=0

RiASi.

Thus, assertion (b2) is proved.

Case II

Suppose the spectrum of X is {1, ν1, ν2}, 1 6= ν1 6= ν2 6= 1, then the spectrum of T 2 is

{1, ν1, ν2, ν1ν2, ν
2
1 , ν

2
2} = {1, ν1, ν2}.

We observe that ν1ν2 6= ν1 or ν2; otherwise ν1 = 1 or ν2 = 1. It follows that ν1ν2 = 1. We

also see that ν2
1 6= 1 or ν1. If so, we will have ν1 = ν2 or ν1 = 1 respectively, both leading

to a contradiction. So, the only possibility is that ν2
1 = ν2. Similarly, we can show that

ν2
2 = ν1. But this implies that ν1 and ν2 are cube roots of unity, which contradicts our

assumption that ν1 + ν2 6= −1.

4.3 Unitary congruence invariant norms

In this section we characterize generalized 3-circular projections on Sn(C) with a unitary

congruence invariant norm.

We recall Theorem 1.2.28, that is, for a unitary congruence invariant norm on Sn(C),

any isometry T is given by T (A) = U tAU , where U is a unitary in Mn(C).

Remark 4.3.1. Suppose T : Sn(C) −→ Sn(C) is defined by T (A) = U tAU , where U ∈

U(Cn). Assume that U t has eigenvalues u1, u2, . . . , un with eigenvectors x1, x2, . . . , xn.

Then T has eigenvalues uiuj with eigenvectors xix
t
j + xjx

t
i for 1 ≤ i, j ≤ n. To see this,

we first note that xix
t
j + xjx

t
i is a symmetric matrix. Then we see that

T (xix
t
j + xjx

t
i) = U t(xix

t
j + xjx

t
i)U
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= U txix
t
jU + U txjx

t
iU

= uixiujx
t
j + ujxjuix

t
i

= uiuj(xix
t
j + xjx

t
i).

So, if i = j we have T (xix
t
i) = U txix

t
iU = u2

i (xix
t
i).

Theorem 4.3.2. Let ‖ · ‖ be a unitary congruence invariant norm on Sn(C) and P0 a

generalized 3-circular projection. Then there exists U ∈ U(Cn) such that one and only one

of the following assertions holds:

(a) U has three distinct eigenvalues. In this case, λ1 +λ2 = −1. Moreover, there exist

Ri = R∗i = R2
i in Mn(C) such that P0 has the form A 7−→ Rt

0AR0 +Rt
1AR2 +Rt

2AR1.

(b) U has two distinct eigenvalues. In this case, one and only one of the following

occurs:

(b1) λi =
√
λj, i, j = 1, 2 and i 6= j and λi’s are of order p, where p is an odd

integer greater or equal to 3. Moreover, there exist Ri = R∗i = R2
i and Si = S∗i = S2

i

in Mn(C) such that

P0(A) =

p−1∑
i=0

RiASi,

where i = 0, 1, . . . , p− 1.

(b2) λ1λ2 = 1 and P0 will have the same form as in (b1).

Proof. Suppose T is of the form A 7−→ U tAU for some U ∈ U(Cn). Let P0 +λ1P1 +λ2P2 =

T . By Lemma 3.2.4, T has spectrum {1, λ1, λ2}. Suppose U has eigenvalues u1, u2, . . . , un.

Then T has eigenvalues uiuj, 1 ≤ i, j ≤ n.

We claim that U can have two or three distinct eigenvalues.

To see the claim, suppose that U has four distinct eigenvalues, say, u1, u2, u3 and u4.

This implies that u1u2, u1u3, u1u4 and u2
1 are distinct eigenvalues of T which is impossible.

Similarly, U cannot have more than four distinct eigenvalues.

If U has one eigenvalue, say, u then T will have eigenvalue u2, which is a contradiction.

So, we consider the following two steps.
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Step I

Suppose U has three distinct eigenvalues, say, u1, u2 and u3.

This implies that

{u2
1, u

2
2, u

2
3, u1u2, u2u3, u1u3} = {1, λ1, λ2}.

None of u1u2, u2u3 or u1u3 are equal and u2
1 is equal to one and only one of u2

2, u2
3, u2u3

because if u2
1 = u2

2 = u2
3, the spectrum of T will have have four distinct eigenvalues, namely,

u1u2, u2u3, u1u3, u2
1 which is not possible.

Suppose that u2
1 = u2

2. Then u2
3 = u1u2. This implies that u2

1, u1u2, u2u3, u1u3 are four

distinct eigenvalues of T , which is impossible.

Therefore, we conclude that u2
1 = u2u3, u2

2 = u1u3 and u2
3 = u1u2. Thus, we have

{u2
1, u

2
2, u1u2} = {1, λ1, λ2}.

Let u2
1 = λ1, u2

2 = λ2, u1u2 = 1 (= u2
3). Then for i, j = 1, 2; i 6= j

λ3
i = (u2

i )
3 = (uju3)3 = u2

juju
3
3 = uiu3uju

3
3 = uiuju

4
3 = u2

3u
4
3 = 1.

Let u2
1 = 1, u2

2 = λ2, u1u2 = λ1. Then for the the triples (i, j, k) = (1, 2, 3) or (2, 3, 2)

we have

λ3
i = (uju1)3 = u2

juju
3
1 = u1ukuju

3
1 = u1u

2
1u

4
1 = 1.

So, we have λ1 and λ2 become the cube roots of unity and hence T 3(A) = A = X tAX for

all A ∈ Sn(C), where X = U3.

Suppose X = (xij). By putting A = E11, E22, . . . , Enn we get x2
ii = 1 for i = 1, 2, . . . , n

and rest of the elements of X to be zero. Similarly, by putting A = E12 + E21, E13 +

E31, . . . , E1n + En1 we get x11 = x22 = · · · = xnn. Therefore, we conclude that X = I or

−I.

Let U3 = I. We put

Ri =
I + µiU + µ2

iU
2

3
,

where i = 0, 1, 2; µ0 = 1, µ1 = ω and µ2 = ω2. Then we have

P0A = Rt
0AR0 +Rt

1AR2 +Rt
2AR1.
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Let U3 = −I. We put

Ri =
I − µiU + µ2

iU
2

3
,

where i = 0, 1, 2, µ0 = 1, µ1 = ω and µ2 = ω2. Then we obtain

P0A = Rt
0AR0 +Rt

1AR2 +Rt
2AR1.

In both cases, we have Ri = R∗i = R2
i .

Step II

Suppose U has two distinct eigenvalues, say, u1 and u2, then the spectrum of T will be

{u2
1, u

2
2, u1u2} = {1, λ1, λ2}.

Lemma 3.2.2 and Proposition 1.2.29 implies that λ1 and λ2 have the same order.

If u2
1 = 1, u2

2 = λ2 and u1u2 = λ1, then we get λ2
1 = λ2. We proceed as in part (A),

Case II of Theorem 4.2.3 to get assertion (b1). Here, we note that the order of λ1 and λ2

can be 3.

If u2
1 = λ1, u2

2 = λ2 and u1u2 = 1, then we get λ1λ2 = 1. We proceed as in part (B),

Case II of Theorem 4.2.3 to get assertion (b2).
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5
Algebraic Reflexivity of the Set of

Isometries of Order n

We recall the definition of algebraic reflexivity. A subset S of B(X) is said to be algebraic

reflexive if S = Sa. The algebraic closure Sa of S is defined as follows:

T ∈ Sa if for every x ∈ X there exists Tx ∈ S such that T (x) = Tx(x).

We also recall that T ∈ Gn(X)⇐⇒ T ∈ G(X) and T n = I

In this chapter we prove that if G(C0(Ω, X)) is algebraically reflexive, then Gn(C0(Ω, X))

is algebraically reflexive. Here, Ω is a locally compact Hausdorff space and X is a Banach

space with trivial centralizer. As a corollary to this, we show that the set of generalized

bi-circular projections on C(Ω, X) is algebraically reflexive. This answers a question raised

in [14].

5.1 Statement of results

We recall Theorem 1.2.13.

T ∈ G(C0(Ω, X)) if and only if ∃ a homeomorphism φ : Ω −→ Ω and a map u : Ω −→
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G(X), continuous in strong operator topology, such that

Tf(ω) = uω(f(φ(ω))), ∀ f ∈ C0(Ω), ω ∈ Ω.

Our first result is the following.

Theorem 5.1.1. Let Ω be a locally compact Hausdorff space and X a Banach space

which has the strong Banach-Stone property. If G(C0(Ω, X)) is algebraically reflexive, then

Gn(C0(Ω, X)) is algebraically reflexive.

Combining the above Theorem with Theorem 1.2.31 we immediately have the following

corollary.

Corollary 5.1.2. Let Ω be a first countable compact Hausdorff space and X a uniformly

convex Banach space such that G(X) is algebraically reflexive. Then Gn(C(Ω, X)) is alge-

braically reflexive.

We also have

Corollary 5.1.3. Let Ω and X be as in Corollary 5.1.2. Furthermore, assume that X

does not have any generalized bi-circular projections. Then the set of generalized bi-circular

projections on C(Ω, X) is algebraically reflexive.

5.2 Proof of results

We start with the following lemma.

Lemma 5.2.1. T ∈ Gn(C0(Ω, X)) if and only if ∃ a homeomorphism φ of Ω and a map

u : Ω −→ G(X) satisfying

uω ◦ uφ(ω) ◦ · · · ◦ uφn−1(ω) = I, φn(ω) = ω, ∀ ω ∈ Ω;

where I denotes the identity map on X and T is given by

Tf(ω) = uω(f(φ(ω))), ∀ f ∈ C0(Ω), ω ∈ Ω.
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Proof. We first note that since T ∈ G(C0(Ω, X)), ∃ a homeomorphism φ : Ω −→ Ω and a

map u : Ω −→ G(X) such that

Tf(ω) = uω(f(φ(ω))), ∀ f ∈ C0(Ω), ω ∈ Ω.

Secondly, as T ∈ Gn(C0(Ω, X)) we have T nf(ω) = f(ω). This show that

uω ◦ uφ(ω) ◦ · · · ◦ uφn−1(ω)(f(φn(ω))) = f(ω). (5.2.1)

For any fixed x ∈ X and fixed ω ∈ Ω we consider a function fx ∈ C0(Ω, X) such that

fx(ω) = x. Applying Equation 5.2.1 to fx we get

uω ◦ uφ(ω) ◦ · · · ◦ uφn−1(ω)(x) = x.

Since this can be done for each x ∈ X and each ω ∈ Ω we conclude

uω ◦ uφ(ω) ◦ · · · ◦ uφn−1(ω) = I.

This also implies that f(φn(ω)) = f(ω) for all f ∈ C0(Ω, X). Hence, we get φn(ω) = ω.

Proof of Theorem 5.1.1

Let T ∈ Gn(C0(Ω, X))
a
. Then for each f ∈ C0(Ω, X) we have Tf(ω) = ufω(f(φf (ω)))

where uf : Ω −→ G(X) is continuous in strong operator topology and satisfies

ufω ◦ u
f
φf (ω) ◦ · · · ◦ u

f

φn−1
f (ω)

= I,

and φf is a homeomorphism of Ω such that φnf (ω) = ω for all ω ∈ Ω. In particular

T ∈ G(C0(Ω, X))
a
. By the algebraically reflexivity of G(C0(Ω, X)), we conclude that T is

a surjective isometry on C0(Ω, X) and hence ∃ a homeomorphism φ : Ω −→ Ω and a map

u : Ω −→ G(X) such that

Tf(ω) = uω(f(φ(ω))), ∀ f ∈ C0(Ω), ω ∈ Ω.

To show that Gn(C0(Ω, X)), we need to prove that T n = I, that is, by Lemma 5.2.1

uω ◦ uφ(ω) ◦ · · · ◦ uφn−1(ω) = I and φn(ω) = ω, ∀ ω ∈ Ω.
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Suppose f = h⊗ x, where h is a strictly positive function in C0(Ω) and 0 6= x ∈ X. Then

we have

Tf(ω) = ufω(f(φf (ω))) = uω(f(φ(ω)))

=⇒ ufω(h(φf (ω))x) = uω(h(φ(ω))x)

=⇒ ‖ufω(h(φf (ω))x)‖ = ‖uω(h(φ(ω))x)‖

=⇒ ‖h(φf (ω))x‖ = ‖h(φ(ω))x‖ (∵ ufω and uω are isometries)

=⇒ h(φf (ω)) = h(φ(ω)) (∵ h is strictly positive)

=⇒ ufω(x) = uω(x).

Hence, we have ufω = uω for all ω ∈ Ω.

Let ω be any point in Ω. We consider the following cases.

Case I

Assume that ω = φ(ω). Then we have

φn(ω) = φ(φ(· · · (φ(ω)) · · · )) (n times) = ω.

We choose h ∈ C0(Ω) such that 0 < h(ω) ≤ 1 and h−1(1) = {ω}. For f = h⊗x, 0 6= x ∈ X,

evaluating Tf at ω we get

Tf(ω) = uω(f(φ(ω))) = ufω(f(φf (ω)))

=⇒ uω(h(φ(ω))x) = ufω(h(φf (ω))x)

=⇒ uω(x) = ufω(h(φf (ω))x) (∵ h(φ(ω)) = h(ω) = 1)

=⇒ ‖uω(x)‖ = ‖ufω(h(φf (ω))x)‖

=⇒ h(φf (ω)) = 1 (uω and ufω are isometries)

=⇒ φf (ω) = ω (by the choice of h)

=⇒ φ2
f (ω) = · · · = φn−1

f (ω) = ω.

So, we have

I = ufω ◦ u
f
φf (ω) ◦ · · · ◦ u

f

φn−1
f (ω)
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= ufω ◦ ufω ◦ · · · ◦ ufω

= uω ◦ uω ◦ · · · ◦ uω (as ufω = uω).

Case II

We assume that φ(ω) 6= ω, φm(ω) = ω such that m divides n and φs(ω) 6= ω for all s < m.

As m divides n, there exist some positive integer q such that n = mq. Therefore, we

have

φn(ω) = φmq(ω) = φm(φm(· · · (φm(ω))) · · · ) (q times) = ω.

We now choose h ∈ C0(Ω) such that 1 ≤ h(ω) ≤ m and

h−1(1) = {ω}, h−1(2) = {φ(ω)}, . . . , h−1(m) = {φm−1(ω)}.

Let f = h⊗ x for 0 6= x ∈ X. Evaluating Tf at ω we get

Tf(ω) = uω(f(φ(ω))) = ufω(f(φf (ω)))

=⇒ uω(h(φ(ω))x) = ufω(h(φf (ω))x)

=⇒ uω(2x) = ufω(h(φf (ω))x) (∵ h(φ(ω)) = 2)

=⇒ ‖uω(2x)‖ = ‖ufω(h(φf (ω))x)‖

=⇒ h(φf (ω)) = 2 (uω and ufω are isometries)

=⇒ φf (ω) = φ(ω) (by the choice of h).

Similarly, by applying Tf at φ(ω), . . . , φm−1(ω) we get

φpf (ω) = φp(ω), for 2 ≤ p ≤ m.

We note that φmf (ω) = φm(ω) = ω. It follows that

φm+1
f (ω) = φf (φ

m
f (ω)) = φf (ω) = φ(ω) = φ(φm(ω)) = φm+1(ω).

Thus, we have

φpf (ω) = φp(ω), for m+ 1 ≤ p ≤ n− 1.

Using the above and the fact that uω = ufω for all ω ∈ Ω, we have

uω ◦ uφ(ω) ◦ · · · ◦ uφn−1(ω) = ufω ◦ u
f
φf (ω) ◦ · · · ◦ u

f

φn−1
f (ω)

= I.
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Chapter 5. Algebraic Reflexivity of the Set of Isometries of Order n

Case III

We assume that φ(ω) 6= ω, φm(ω) = ω such that m does not divides n and φs(ω) 6= ω for

all s < m.

Therefore, ∃ integers r and q such that n = mq + r, 0 < r < m. We choose h ∈ C0(Ω)

such that 1 ≤ h(ω) ≤ m and

h−1(1) = {ω}, h−1(2) = {φ(ω)}, . . . , h−1(m) = {φm−1(ω)}.

By applying Tf at ω, φ(ω), . . . , φm−1(ω) and proceeding in the same way as in Case II we

will get

φpf (ω) = φp(ω), for 1 ≤ p ≤ n− 1.

We now see that

Tf(φn−1(ω)) = uφn−1(ω)(f(φn(ω))) = ufφn−1(ω)(f(φf (φ
n−1(ω))))

=⇒ uφn−1(ω)(h(φn(ω))x) = ufφn−1(ω)(h(φf (φ
n−1
f (ω)))x)

=⇒ uφn−1(ω)(h(φn(ω))x) = ufφn−1(ω)(h(φnf (ω))x)

=⇒ uφn−1(ω)(h(φn(ω))x) = ufφn−1(ω)(h(ω)x) (∵ φnf (ω) = ω)

=⇒ uφn−1(ω)(h(φn(ω))x) = ufφn−1(ω)(x) (∵ h(ω) = 1)

=⇒ ‖uφn−1(ω)(h(φn(ω))x)‖ = ‖ufφn−1(ω)(x)‖

=⇒ h(φn(ω)) = 1 (uφn−1(ω) and ufφn−1(ω) are isometries)

=⇒ φn(ω) = ω (by the choice of h).

But, our assumption that φm(ω) = ω implies that φmq(ω) = ω. Hence, we have

ω = φn(ω) = φr+mq(ω) = φr(φmq(ω)) = φr(ω),

a contradiction because r < m.

Case IV

We assume that ω, φ(ω), . . . , φn−1(ω) are all distinct.

78



5.2. Proof of results

Choose h ∈ C0(Ω) such that 1 ≤ h(ω) ≤ n and

h−1(1) = {ω}, h−1(2) = {φ(ω)}, . . . , h−1(n) = {φn−1(ω)}.

Proceeding the same way as in Case III we get

φn(ω) = ω and uω ◦ uφ(ω) ◦ · · · ◦ uφn−1(ω) = I.

This completes the proof of Theorem 5.1.1. �

Proof of Corollary 5.1.3

We denote the set of all generalized bi-circular projections on C(Ω, X) by P . Let P ∈ Pa.

Then for each f ∈ C(Ω, X), there exist Pf ∈ P such that Pf = Pff . Therefore, by

Theorem 2.3.2 and the assumption on X, for each f there exists a homeomorphism φf of

Ω, uf : Ω −→ G(X) satisfying

φ2
f (ω) = ω and ufω ◦ u

f
φf (ω) = I, ∀ ω ∈ Ω

such that

Pf(ω) =
1

2
[f(ω) + ufω(f(φf (ω)))].

Therefore, for each f ∈ C(Ω, X), we get (2P − I)f(ω) = ufω(f(φf (ω))). This implies that

2P − I ∈ G2(C(Ω, X))
a
. The conclusion follows from Corollary 5.1.2. �
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