Indian Institute of Information Technology Allahabad
 Univariate and Multivariate Calculus
 C3 End Semester Examination - Tentative Marking Scheme

Program: B.Tech. $2^{\text {nd }}$ Semester
Duration: 2 hours
Date: June 27, 2023
Full Marks: 55
Time: 9:30 AM - 11:30 AM

Important Instructions:

1. Answer all questions. Writing on question paper is not allowed.
2. Attempt all the parts of questions 1 at the same place. Parts done separately will not be graded.
3. Number the pages of your answer booklet. On the back of the front page of your answer booklet, make a table (as shown below) to indicate the page number in which respective questions have been answered. If you did not attempt a particular question, write down NA.

Question No.	1	2	3	4	5	6	7
Page No.							

4. Use of any electronic gadgets is not allowed.
5. This question paper contains two pages.
6. Mention whether the following statements are true or false. In either case, provide proper justification.
(a) Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function such that $f(x) \geq 0$ for all $x \in[0,1]$. If $\int_{0}^{1} f(x) d x=0$, then $f(x)=0$ for all $x \in[0,1]$.
(b) The sequence $\left(\frac{\sin n}{n}, \frac{\pi^{n}}{n!}\right)$ is convergent.
(c) The set $\left\{(x, y, z) \in \mathbb{R}^{3}: z=0\right\}$ is open in \mathbb{R}^{3}.
(d) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $f(x, y)=\sqrt{|x y|}$. Then the directional derivatives of f at $(0,0)$ exist in all directions.
7. Determine the values of α for which the integral

$$
\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x
$$

converges.
Solution: $\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x=\int_{0}^{1} x^{\alpha-1} e^{-x} d x+\int_{1}^{\infty} x^{\alpha-1} e^{-x} d x$.
Let $g_{1}(x)=\frac{1}{x^{1-\alpha}}$ and $g_{2}(x)=\frac{1}{x^{2}}$.

Since $\lim _{x \rightarrow 0} \frac{x^{\alpha-1} e^{-x}}{g_{1}(x)}=1$, by LCT $\int_{0}^{1} x^{\alpha-1} e^{-x} d x$ converges for $1-\alpha<1$, that is, $\alpha>0$.
Since $\lim _{x \rightarrow \infty} \frac{x^{\alpha-1} e^{-x}}{g_{2}(x)}=0$, by LCT $\int_{0}^{1} x^{\alpha-1} e^{-x} d x$ converges for all $\alpha \in \mathbb{R}$.
Hence, $\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x$ converges if and only if $\alpha>0$.
3. Find the length of the curve

$$
\begin{equation*}
y=\frac{x^{3}}{12}+\frac{1}{x}, \quad 1 \leq x \leq 4 \tag{4}
\end{equation*}
$$

Solution: The length of the curve is $L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x$.
Hence, the length of the graph over $[1,4]$ is $L=\int_{1}^{4} \sqrt{1+\left[\frac{x^{2}}{4}-\frac{1}{x^{2}}\right]^{2}} d x=\int_{1}^{4}\left(\frac{x^{2}}{4}+\frac{1}{x^{2}}\right) d x=$ 6.
$[1+1+1]$
4. The region bounded by the curve $y=x^{2}+1$ and the line $y=-x+3$ is revolved about the x-axis to generate a solid. Find the volume of the solid using the Washer method.
Solution: Here, outer radius is $R(x)=-x+3$ and inner radius is $r(x)=x^{2}+1 . \quad[1+1]$ The volume is given by $V=\int_{a}^{b} \pi\left([R(x)]^{2}-[r(x)]^{2}\right) d x$.
Hence, $V=\int_{-2}^{1} \pi\left((-x+3)^{2}-\left(x^{2}+1\right)^{2}\right) d x=\pi \int_{-2}^{1}\left(8-6 x-x^{2}-x^{4}\right) d x=\frac{117 \pi}{5} . \quad[1+1+1]$
5. Consider the curve $r=2 \cos 2 \theta$.
(a) Sketch the graph of the above curve.
(b) Does the point $\left(2, \frac{\pi}{2}\right)$ lie on this curve.
(c) Find the area of the region in the plane enclosed by the curve.

Solution:

To sketch the graph we take some points

θ	0	$\pi / 6$	$\pi / 4$	$\pi / 2$
r	2	1	0	-2

The area of half petal is given by $A=\int_{a}^{b} \frac{1}{2} r^{2} d \theta=\int_{0}^{\pi / 4} \frac{1}{2}(2 \cos 2 \theta)^{2} d \theta=\pi / 4$.
Therefore the required area under curve is $8 \times \pi / 4=2 \pi$.
Here, the point $(2, \pi / 2)$ lies on the curve because $(2, \pi / 2)=(-2,-\pi / 2)$.
Sketch
6. Find the absolute maxima and absolute minima of the function

$$
f(x, y)=2+2 x+4 y-x^{2}-y^{2}
$$

on the triangular region in the first quadrant bounded by the lines $x=0, y=0$ and $y=9-x$. [12]
Solution: $\nabla f(x, y)=(2-2 x, 4-2 y)$

Figure 1: Sketch

The critical point is $(1,2)$ and $f(1,2)=7$.
On boundary $y=0, g(x)=f(x, 0)=2+2 x-x^{2}$ and $g^{\prime}(x)=2-2 x$.
Hence critical point in the interior of the boundary is $(1,0)$ and $f(1,0)=3$.
On boundary $x=0, g(y)=f(0, y)=2+4 y-y^{2}$ and $g^{\prime}(y)=4-2 y$.
Hence critical point in the interior of the boundary is $(0,2)$ and $f(0,2)=6$.
On boundary $y=9-x, g(x)=f(x, 9-x)=-43+16 x-2 x^{2}$ and $g^{\prime}(x)=16-4 x$.
Hence critical point in the interior of the boundary is $(4,5)$ and $f(4,5)=-11$.
The corner points are $(0,0),(9,0)$ and $(0,9)$ with $f(0,0)=2, f(9,0)=-61$ and $f(0,9)=-43$. $[1+1+1]$
Thus, the absolute maximum value is 7 which is attained at $(1,2)$ and absolute minimum value is -61 which is attained at $(9,0)$.
7. Let D denote the solid enclosed by the spheres $x^{2}+y^{2}+(z-1)^{2}=1$ and $x^{2}+y^{2}+z^{2}=3$. Find the volume of D using spherical coordinates.

Solution.

The volume is given by

$$
\int_{0}^{2 \pi} \int_{0}^{\pi / 6} \int_{0}^{\sqrt{3}} \rho^{2} \sin \phi d \rho d \phi d \theta[1+2+2+1]+\int_{0}^{2 \pi} \int_{\pi / 6}^{\pi / 2} \int_{0}^{2 \cos \phi} \rho^{2} \sin \phi d \rho d \phi d \theta[2+2]
$$

