MEAN VALUE THEOREM

1. TANGENTS AND RATE OF CHANGE

There are two important ways of looking at derivatives. One interpretation is physical
and the other is geometric.

Let f : [a,b] — R be a differentiable function. We can interpret the difference quotient

fa+h)—[f (=)

- as the average rate of change of f over the interval from x to x + h. The

instantaneous rate of change of f with respect to = at zy is the derivative f’(z¢) =

fath)—f(z
0 h

limy,_, ), Thus, instantaneous rates are limits of average rates.

Problem 1. The area A of a circle is related to its diameter D by the equation A = %DZ.

How fast does the area change w.r.t the diameter when the diameter is 10 m.

Solution. The rate of change of the area w.r.t the diameter is j—g = %. When D = 10

m, the area changes w.r.t the diameter at the rate of 57 m. U

If we think of the domain as the time interval and f(zo + h) — f(zo) as the distance

W . The derivative

travelled by a particle in h units of time, then the velocity is
which is the limit of these velocities as h — 0 is called the instantaneous velocity of the
motion of the particle at the instant z = xg.

The geometric interpretation of the derivative f’(x) is that it is the slope of the tangent

line at (z, f(z)) to the graph {(z, f(x)) : x € [a, b]}.

Problem 2. (1) Find the slope of the curve y = % at any point x = a # 0. What is
the slope of at x = —1.
(2) At which point(s), the slope equals —7.
(8) What happens to the tangent to the curve at the point (a, %) as a changes.

Solution. (1) Here, f(z) = . Then f'(z) = —=5. Hence, the slope at (a, ) is —=.
(2) =% = —1 = a =2 or a = —2. Thus, the curve has slope —1 at the points (2, 3)
and (-2, —3).
(3) The slope —a% is always negative if a # 0. Asa — 07 (or 07), the slope approaches

—oo and the tangent becomes increasingly steep. As a moves away from 0 in either

direction, the slope approaches 0 and the tangent levels off to become horizontal.

O
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Definition 3 (Local Exremum). (1) Let J be an interval and f : J — R be a func-
tion. We say that a point ¢ € J is a point of local maximum if there exists 6 > 0
such that (¢ — 0,c¢ +0) C J and f(x) < f(c) for all x € (¢ — d,¢+6). A local
minimum is defined similarly.

(2) A point c is said to be a local extremum if it is either a local mazimum or a local
MANIIMUM.
(8) A point zq is called a point of global mazimum on J if f(x) < f(xg) for allx € J.

Global minimum and then global extremum are defined similarly.

Examples

(1) Let f : [a,b] — R be defined as f(z) = x. Then b is a point of global maximum
but not a local maximum. Also, a is a point of global minimum but not a local
minimum.

(2) Consider f : [—2m,27] — R where f(z) = cosx. The point x = 0 is a local
maximum as well as a global maximum. What do you think about the points

xr = 2.

Proposition 4. Let f : J — R be differentiable at ¢ € J. If f has local extremum at c,
then f'(c) = 0.

Proof. Suppose f has a local maximum at ¢. Then 3 § > 0 such that f(zx) < f(c) for
all x € (¢ — d0,¢+ ). In other words, for all h € (—6,6), we have f(c+ h) < f(c) and
f(e—=h) < f(c). Since f is differentiable at c,

fle+h) = fle) fle+h) = fle)

"(¢) = 1i <0and f'(¢c) = li > 0.
re) = fm, SO und ) = Jig T 2
This implies that f'(¢) = 0. O

Proposition 5 (Rolle’s Theorem). If f : [a,b] — R is continuous on [a,b] and differen-
tiable on (a,b) and if f(a) = f(b), then there exists ¢ € (a,b) such that f'(c) = 0.

Proof. Exercise. O

Geometrically, Rolle’s Theorem says that there exists a point ¢ € (a,b) such that the
tangent at (c, f(c) is parallel to z-axis.

Rolle’s Theorem together with IVP are used to check the existence and uniqueness of
roots of continuous functions in certain intervals as illustrated in the following examples.

Examples
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(1) Let f(z) = 2® + px + q for + € R, where p,q € R, P > 0. We observe that
f(z) = 00 as © — oo and f(z) — —oo as v — —oo. Hence by IVP, there a € R
such that f(a) = 0. Thus, f has at least one real root. Suppose there is b € R
such that f(b) = 0. Rolle’s Theorem implies the existence of ¢ € (a,b) such that
f'(e) =0. But f'(x) = 3z*+ p # 0 for any = € R since p > 0.
(2) If f(z) = 2*+22® -2 for € R, then f(0) = —2 < 0 and f(1) = 1 > 0. Therefore,
by IVP f will have at least one root in [0,1]. Moreover, f'(z) = 42 + 62> > 0
for z € (0,00). So, f has at most one root in [0,00). This implies that f has a
unique root in [0, 00).

Now we state the most important result in differentiation.

Theorem 6 (Mean Value Theorem (MVT)). If f: [a,b] — R is continuous on [a,b] and
differentiable on (a,b), then there exists c € (a,b) such that

f(b) = fla) = f'(c)(b - a).
Proof. Define F': [a,b] — R by

Fe) = f(2) - f(a) - (M) (v~ a).

b—a
Now, apply Rolle’s Theorem to the function F. O

Remark 7. (1) The mean value theorem (in short, MV'T) is also known as Lagrange’s
mean value theorem. MV'T is crucial in characterizing constant functions, mono-

tonic functions, and convex/concave functions. Such characterizations can only
be obtained using MV'T.
(2) If we write b= a + h, then MVT could be stated as follows:

fla+h) = f(a)+ hf'(a+ 0h) for some 6 € (0,1). (Verify!)

2.1. Applications of MVT.

(1) Let f : [a,b] — R be differentiable such that f’(z) =0 for all x € [a,b]. Then f is

constant.

Proof. For any z,y € [a,b], by MVT, we have f(y)— f(z) = f'(2)(y — x) for some

z between = and y. Since f'(z) = 0, we get f(x) = f(y) for all z,y € [a,b]. This

implies that f is a constant function. (Try to prove this ab initio!) O
(2) Let f : [a,b] — R be differentiable. If f’(z) > 0 (respectively, f'(z) > 0) for all

x € [a,b], then f is increasing (respectively, strictly increasing). We have a similar

result for decreasing functions.
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Proof. For z,y € [a, b] such that z < y, we have by MVT, f(y)—f(z) = f'(2)(y—x)
for some z between z and y. Since f'(z) > 0 (respectively, f'(z) > 0) and y—z > 0,
we get f(y) > f(z) (respectively, f(y) > f(x)). Thus, f is increasing (respectively,

increasing). O

(3) MVT is quite useful in proving certain inequalities. For example, can you find out
which is greater, e™ or 7°. Let us prove a more general inequality.

B Ife <a<b, then a® > b

Proof. Let 0 < x < y and f(z) =logz on [z,y]. Using MVT, try to prove

u<logg<y_x. (1)
y x x

Now, using (), we have

b—a b b—a
<log— < .
b a a

. a b _ . _
Since alog? < b — a, we have & = ¢tlo8q < ¢b=a That is, b* < et~ Ife < a
ga ) ) )

aa

then e' < a' for t > 0 (Why?). Thus, we conclude that

b < %% < a¥ % = o,

t

Theorem 8 (Cauchy’s Mean Value Theorem (CMVT)). If f, g : [a,b] — R are continuous
on [a,b] and differentiable on (a,b), then there exists ¢ € (a,b) such that

f(b) ~ fla) _ f'(¢)
9(0) —gla) ~ ¢(0)

Proof. Exercise. O




	1. Tangents and Rate of Change
	2. Mean Value Theorem
	2.1. Applications of MVT


