MEAN VALUE THEOREM

1. Tangents and Rate of Change

There are two important ways of looking at derivatives. One interpretation is physical and the other is geometric.

Let $f:[a, b] \rightarrow \mathbb{R}$ be a differentiable function. We can interpret the difference quotient $\frac{f(x+h)-f(x)}{h}$ as the average rate of change of f over the interval from x to $x+h$. The instantaneous rate of change of f with respect to x at x_{0} is the derivative $f^{\prime}\left(x_{0}\right)=$ $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$. Thus, instantaneous rates are limits of average rates.

Problem 1. The area A of a circle is related to its diameter D by the equation $A=\frac{\pi}{4} D^{2}$. How fast does the area change w.r.t the diameter when the diameter is 10 m .

Solution. The rate of change of the area w.r.t the diameter is $\frac{d A}{d D}=\frac{\pi D}{2}$. When $D=10$ m , the area changes w.r.t the diameter at the rate of $5 \pi \mathrm{~m}$.

If we think of the domain as the time interval and $f\left(x_{0}+h\right)-f\left(x_{0}\right)$ as the distance travelled by a particle in h units of time, then the velocity is $\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$. The derivative which is the limit of these velocities as $h \rightarrow 0$ is called the instantaneous velocity of the motion of the particle at the instant $x=x_{0}$.

The geometric interpretation of the derivative $f^{\prime}(x)$ is that it is the slope of the tangent line at $(x, f(x))$ to the graph $\{(x, f(x)): x \in[a, b]\}$.

Problem 2. (1) Find the slope of the curve $y=\frac{1}{x}$ at any point $x=a \neq 0$. What is the slope of at $x=-1$.
(2) At which point(s), the slope equals $-\frac{1}{4}$.
(3) What happens to the tangent to the curve at the point ($a, \frac{1}{a}$) as a changes.

Solution. (1) Here, $f(x)=\frac{1}{x}$. Then $f^{\prime}(x)=-\frac{1}{x^{2}}$. Hence, the slope at $\left(a, \frac{1}{a}\right)$ is $-\frac{1}{a^{2}}$.
(2) $-\frac{1}{a^{2}}=-\frac{1}{4} \Rightarrow a=2$ or $a=-2$. Thus, the curve has slope $-\frac{1}{4}$ at the points ($2, \frac{1}{2}$) and $\left(-2,-\frac{1}{2}\right)$.
(3) The slope $-\frac{1}{a^{2}}$ is always negative if $a \neq 0$. As $a \rightarrow 0^{+}$(or 0^{-}), the slope approaches $-\infty$ and the tangent becomes increasingly steep. As a moves away from 0 in either direction, the slope approaches 0 and the tangent levels off to become horizontal.

2. Mean Value Theorem

Definition 3 (Local Exremum). (1) Let J be an interval and $f: J \rightarrow \mathbb{R}$ be a function. We say that a point $c \in J$ is a point of local maximum if there exists $\delta>0$ such that $(c-\delta, c+\delta) \subset J$ and $f(x) \leq f(c)$ for all $x \in(c-\delta, c+\delta)$. A local minimum is defined similarly.
(2) A point c is said to be a local extremum if it is either a local maximum or a local minimum.
(3) A point x_{0} is called a point of global maximum on J if $f(x) \leq f\left(x_{0}\right)$ for all $x \in J$. Global minimum and then global extremum are defined similarly.

Examples

(1) Let $f:[a, b] \rightarrow \mathbb{R}$ be defined as $f(x)=x$. Then b is a point of global maximum but not a local maximum. Also, a is a point of global minimum but not a local minimum.
(2) Consider $f:[-2 \pi, 2 \pi] \rightarrow \mathbb{R}$ where $f(x)=\cos x$. The point $x=0$ is a local maximum as well as a global maximum. What do you think about the points $x= \pm 2 \pi$.

Proposition 4. Let $f: J \rightarrow \mathbb{R}$ be differentiable at $c \in J$. If f has local extremum at c, then $f^{\prime}(c)=0$.

Proof. Suppose f has a local maximum at c. Then $\exists \delta>0$ such that $f(x) \leq f(c)$ for all $x \in(c-\delta, c+\delta)$. In other words, for all $h \in(-\delta, \delta)$, we have $f(c+h) \leq f(c)$ and $f(c-h) \leq f(c)$. Since f is differentiable at c,

$$
f^{\prime}(c)=\lim _{h \rightarrow 0^{+}} \frac{f(c+h)-f(c)}{h} \leq 0 \text { and } f^{\prime}(c)=\lim _{h \rightarrow 0^{-}} \frac{f(c+h)-f(c)}{h} \geq 0 .
$$

This implies that $f^{\prime}(c)=0$.

Proposition 5 (Rolle's Theorem). If $f:[a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$ and differentiable on (a, b) and if $f(a)=f(b)$, then there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$.

Proof. Exercise.
Geometrically, Rolle's Theorem says that there exists a point $c \in(a, b)$ such that the tangent at $(c, f(c)$ is parallel to x-axis.

Rolle's Theorem together with IVP are used to check the existence and uniqueness of roots of continuous functions in certain intervals as illustrated in the following examples.

Examples

(1) Let $f(x)=x^{3}+p x+q$ for $x \in \mathbb{R}$, where $p, q \in \mathbb{R}, P>0$. We observe that $f(x) \rightarrow \infty$ as $x \rightarrow \infty$ and $f(x) \rightarrow-\infty$ as $x \rightarrow-\infty$. Hence by IVP, there $a \in \mathbb{R}$ such that $f(a)=0$. Thus, f has at least one real root. Suppose there is $b \in \mathbb{R}$ such that $f(b)=0$. Rolle's Theorem implies the existence of $c \in(a, b)$ such that $f^{\prime}(c)=0$. But $f^{\prime}(x)=3 x^{2}+p \neq 0$ for any $x \in \mathbb{R}$ since $p>0$.
(2) If $f(x)=x^{4}+2 x^{3}-2$ for $x \in \mathbb{R}$, then $f(0)=-2<0$ and $f(1)=1>0$. Therefore, by IVP f will have at least one root in $[0,1]$. Moreover, $f^{\prime}(x)=4 x^{3}+6 x^{2}>0$ for $x \in(0, \infty)$. So, f has at most one root in $[0, \infty)$. This implies that f has a unique root in $[0, \infty)$.

Now we state the most important result in differentiation.
Theorem 6 (Mean Value Theorem (MVT)). If $f:[a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$ and differentiable on (a, b), then there exists $c \in(a, b)$ such that

$$
f(b)-f(a)=f^{\prime}(c)(b-a) .
$$

Proof. Define $F:[a, b] \rightarrow \mathbb{R}$ by

$$
F(x)=f(x)-f(a)-\left(\frac{f(b)-f(a)}{b-a}\right)(x-a)
$$

Now, apply Rolle's Theorem to the function F.
Remark 7. (1) The mean value theorem (in short, MVT) is also known as Lagrange's mean value theorem. MVT is crucial in characterizing constant functions, monotonic functions, and convex/concave functions. Such characterizations can only be obtained using MVT.
(2) If we write $b=a+h$, then MVT could be stated as follows:

$$
f(a+h)=f(a)+h f^{\prime}(a+\theta h) \text { for some } \theta \in(0,1) .(\text { Verify! })
$$

2.1. Applications of MVT.

(1) Let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable such that $f^{\prime}(x)=0$ for all $x \in[a, b]$. Then f is constant.

Proof. For any $x, y \in[a, b]$, by MVT, we have $f(y)-f(x)=f^{\prime}(z)(y-x)$ for some z between x and y. Since $f^{\prime}(z)=0$, we get $f(x)=f(y)$ for all $x, y \in[a, b]$. This implies that f is a constant function. (Try to prove this ab initio!)
(2) Let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable. If $f^{\prime}(x) \geq 0$ (respectively, $f^{\prime}(x)>0$) for all $x \in[a, b]$, then f is increasing (respectively, strictly increasing). We have a similar result for decreasing functions.

Proof. For $x, y \in[a, b]$ such that $x<y$, we have by MVT, $f(y)-f(x)=f^{\prime}(z)(y-x)$ for some z between x and y. Since $f^{\prime}(z) \geq 0$ (respectively, $\left.f^{\prime}(z)>0\right)$ and $y-x>0$, we get $f(y) \geq f(x)$ (respectively, $f(y)>f(x)$). Thus, f is increasing (respectively, increasing).
(3) MVT is quite useful in proving certain inequalities. For example, can you find out which is greater, e^{π} or π^{e}. Let us prove a more general inequality.
■ If $e \leq a<b$, then $a^{b}>b^{a}$.
Proof. Let $0<x<y$ and $f(x)=\log x$ on $[x, y]$. Using MVT, try to prove

$$
\begin{equation*}
\frac{y-x}{y}<\log \frac{y}{x}<\frac{y-x}{x} . \tag{1}
\end{equation*}
$$

Now, using (1), we have

$$
\frac{b-a}{b}<\log \frac{b}{a}<\frac{b-a}{a}
$$

Since $a \log \frac{b}{a}<b-a$, we have $\frac{b^{a}}{a^{a}}=e^{a \log \frac{b}{a}}<e^{b-a}$. That is, $b^{a}<e^{b-a} a^{a}$. If $e \leq a$, then $e^{t} \leq a^{t}$ for $t \geq 0$ (Why?). Thus, we conclude that

$$
b^{a}<e^{b-a} a^{a}<a^{b-a} a^{a}=a^{b} .
$$

Theorem 8 (Cauchy's Mean Value Theorem (CMVT)). If $f, g:[a, b] \rightarrow \mathbb{R}$ are continuous on $[a, b]$ and differentiable on (a, b), then there exists $c \in(a, b)$ such that

$$
\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}
$$

Proof. Exercise.

