
MEAN VALUE THEOREM

1. Tangents and Rate of Change

There are two important ways of looking at derivatives. One interpretation is physical

and the other is geometric.

Let f : [a, b] → R be a differentiable function. We can interpret the difference quotient

f(x+h)−f(x)
h

as the average rate of change of f over the interval from x to x + h. The

instantaneous rate of change of f with respect to x at x0 is the derivative f ′(x0) =

limh→0
f(x+h)−f(x)

h
. Thus, instantaneous rates are limits of average rates.

Problem 1. The area A of a circle is related to its diameter D by the equation A = π
4
D2.

How fast does the area change w.r.t the diameter when the diameter is 10 m.

Solution. The rate of change of the area w.r.t the diameter is dA
dD

= πD
2
. When D = 10

m, the area changes w.r.t the diameter at the rate of 5π m. �

If we think of the domain as the time interval and f(x0 + h) − f(x0) as the distance

travelled by a particle in h units of time, then the velocity is f(x0+h)−f(x0)
h

. The derivative

which is the limit of these velocities as h → 0 is called the instantaneous velocity of the

motion of the particle at the instant x = x0.

The geometric interpretation of the derivative f ′(x) is that it is the slope of the tangent

line at (x, f(x)) to the graph {(x, f(x)) : x ∈ [a, b]}.

Problem 2. (1) Find the slope of the curve y = 1
x
at any point x = a 6= 0. What is

the slope of at x = −1.

(2) At which point(s), the slope equals −1
4
.

(3) What happens to the tangent to the curve at the point (a, 1
a
) as a changes.

Solution. (1) Here, f(x) = 1
x
. Then f ′(x) = − 1

x2 . Hence, the slope at (a, 1
a
) is − 1

a2
.

(2) − 1
a2

= −1
4
⇒ a = 2 or a = −2. Thus, the curve has slope −1

4
at the points (2, 1

2
)

and (−2,−1
2
).

(3) The slope − 1
a2

is always negative if a 6= 0. As a → 0+ (or 0−), the slope approaches

−∞ and the tangent becomes increasingly steep. As a moves away from 0 in either

direction, the slope approaches 0 and the tangent levels off to become horizontal.

�
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2. Mean Value Theorem

Definition 3 (Local Exremum). (1) Let J be an interval and f : J → R be a func-

tion. We say that a point c ∈ J is a point of local maximum if there exists δ > 0

such that (c − δ, c + δ) ⊂ J and f(x) ≤ f(c) for all x ∈ (c − δ, c + δ). A local

minimum is defined similarly.

(2) A point c is said to be a local extremum if it is either a local maximum or a local

minimum.

(3) A point x0 is called a point of global maximum on J if f(x) ≤ f(x0) for all x ∈ J .

Global minimum and then global extremum are defined similarly.

Examples

(1) Let f : [a, b] → R be defined as f(x) = x. Then b is a point of global maximum

but not a local maximum. Also, a is a point of global minimum but not a local

minimum.

(2) Consider f : [−2π, 2π] → R where f(x) = cosx. The point x = 0 is a local

maximum as well as a global maximum. What do you think about the points

x = ±2π.

Proposition 4. Let f : J → R be differentiable at c ∈ J . If f has local extremum at c,

then f ′(c) = 0.

Proof. Suppose f has a local maximum at c. Then ∃ δ > 0 such that f(x) ≤ f(c) for

all x ∈ (c − δ, c + δ). In other words, for all h ∈ (−δ, δ), we have f(c + h) ≤ f(c) and

f(c− h) ≤ f(c). Since f is differentiable at c,

f ′(c) = lim
h→0+

f(c+ h)− f(c)

h
≤ 0 and f ′(c) = lim

h→0−

f(c+ h)− f(c)

h
≥ 0.

This implies that f ′(c) = 0. �

Proposition 5 (Rolle’s Theorem). If f : [a, b] → R is continuous on [a, b] and differen-

tiable on (a, b) and if f(a) = f(b), then there exists c ∈ (a, b) such that f ′(c) = 0.

Proof. Exercise. �

Geometrically, Rolle’s Theorem says that there exists a point c ∈ (a, b) such that the

tangent at (c, f(c) is parallel to x-axis.

Rolle’s Theorem together with IVP are used to check the existence and uniqueness of

roots of continuous functions in certain intervals as illustrated in the following examples.

Examples
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(1) Let f(x) = x3 + px + q for x ∈ R, where p, q ∈ R, P > 0. We observe that

f(x) → ∞ as x → ∞ and f(x) → −∞ as x → −∞. Hence by IVP, there a ∈ R

such that f(a) = 0. Thus, f has at least one real root. Suppose there is b ∈ R

such that f(b) = 0. Rolle’s Theorem implies the existence of c ∈ (a, b) such that

f ′(c) = 0. But f ′(x) = 3x2 + p 6= 0 for any x ∈ R since p > 0.

(2) If f(x) = x4+2x3−2 for x ∈ R, then f(0) = −2 < 0 and f(1) = 1 > 0. Therefore,

by IVP f will have at least one root in [0, 1]. Moreover, f ′(x) = 4x3 + 6x2 > 0

for x ∈ (0,∞). So, f has at most one root in [0,∞). This implies that f has a

unique root in [0,∞).

Now we state the most important result in differentiation.

Theorem 6 (Mean Value Theorem (MVT)). If f : [a, b] → R is continuous on [a, b] and

differentiable on (a, b), then there exists c ∈ (a, b) such that

f(b)− f(a) = f ′(c)(b− a).

Proof. Define F : [a, b] → R by

F (x) = f(x)− f(a)−

(

f(b)− f(a)

b− a

)

(x− a).

Now, apply Rolle’s Theorem to the function F . �

Remark 7. (1) The mean value theorem (in short, MVT) is also known as Lagrange’s

mean value theorem. MVT is crucial in characterizing constant functions, mono-

tonic functions, and convex/concave functions. Such characterizations can only

be obtained using MVT.

(2) If we write b = a + h, then MVT could be stated as follows:

f(a+ h) = f(a) + hf ′(a+ θh) for some θ ∈ (0, 1). (Verify!)

2.1. Applications of MVT.

(1) Let f : [a, b] → R be differentiable such that f ′(x) = 0 for all x ∈ [a, b]. Then f is

constant.

Proof. For any x, y ∈ [a, b], by MVT, we have f(y)− f(x) = f ′(z)(y− x) for some

z between x and y. Since f ′(z) = 0, we get f(x) = f(y) for all x, y ∈ [a, b]. This

implies that f is a constant function. (Try to prove this ab initio!) �

(2) Let f : [a, b] → R be differentiable. If f ′(x) ≥ 0 (respectively, f ′(x) > 0) for all

x ∈ [a, b], then f is increasing (respectively, strictly increasing). We have a similar

result for decreasing functions.
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Proof. For x, y ∈ [a, b] such that x < y, we have by MVT, f(y)−f(x) = f ′(z)(y−x)

for some z between x and y. Since f ′(z) ≥ 0 (respectively, f ′(z) > 0) and y−x > 0,

we get f(y) ≥ f(x) (respectively, f(y) > f(x)). Thus, f is increasing (respectively,

increasing). �

(3) MVT is quite useful in proving certain inequalities. For example, can you find out

which is greater, eπ or πe. Let us prove a more general inequality.

� If e ≤ a < b, then ab > ba.

Proof. Let 0 < x < y and f(x) = log x on [x, y]. Using MVT, try to prove

y − x

y
< log

y

x
<

y − x

x
. (1)

Now, using (1), we have

b− a

b
< log

b

a
<

b− a

a
.

Since a log b
a
< b− a, we have ba

aa
= ea log

b

a < eb−a. That is, ba < eb−aaa. If e ≤ a,

then et ≤ at for t ≥ 0 (Why?). Thus, we conclude that

ba < eb−aaa < ab−aaa = ab.

�

Theorem 8 (Cauchy’s Mean Value Theorem (CMVT)). If f, g : [a, b] → R are continuous

on [a, b] and differentiable on (a, b), then there exists c ∈ (a, b) such that

f(b)− f(a)

g(b)− g(a)
=

f ′(c)

g′(c)
.

Proof. Exercise. �
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