DIFFERENTIABILITY

The basic idea of differential calculus is to study the local behaviour of a function at a point by its first order (linear) approximation at the same point.

Throughout J will denote an interval, and $c \in J$. Let $f: J \to \mathbb{R}$ be a function. We want to approximate f(x) for x near c. If E(x) = f(x) - a - b(x - c) is the error by taking the value of f(x) as a + b(x - c) near c, we want the error to go to zero much faster than x goes to c. That is, $\lim_{x\to c} \frac{f(x)-a-b(x-c)}{x-c} = 0$. If this is true, then $\lim_{x\to c} (f(x)-a-b(x-c)) = 0$ (Why?). This implies that $\lim_{x\to c} f(x) = a$. If f is continuous at c, then f(c) = a. Thus, we can approximate f at c if there exists a real number b such that $\lim_{x\to c} \frac{f(x)-f(c)}{x-c} = b$. If this happens, we say that f is differentiable at c, and denote the real number b by f'(c).

Definition 1. Let $f: J \to \mathbb{R}$. Then f is said to be differentiable at c if $\exists b \in \mathbb{R}$ such that $\lim_{x\to c} \frac{f(x)-f(c)}{x-c} = b$. In this case, the value of the limit, that is, b is denoted by f'(c) and is called the derivative of f at c.

If f is differentiable at every point of J, we say that f is differentiable on J. In such a case, we obtain a new function from J to \mathbb{R} given by $c \mapsto f'(c)$. This function is denoted by f' and is called the derivative function of f. We sometime denote f' by $\frac{df}{dx}$ or $\frac{dy}{dx}$ when y = f(x). Likewise, f'(c) is often denoted by $\frac{df}{dx}|_{x=c}$ or $\frac{dy}{dx}|_{x=c}$.

Remark 2. (1) In $\epsilon - \delta$ form, we say that f is differentiable at c if for every $\epsilon > 0$, $\exists a \delta > 0$ such that

$$x \in J, \ 0 < |x - c| < \delta \Rightarrow |f(x) - f(c) - b(x - c)| < \epsilon |x - c|.$$

(2) It is useful to use the variable h for the increment x - c. So, f is differentiable at $c, if \exists b \in \mathbb{R}$ such that $\lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = b$.

Examples

- (1) Let $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = |x|. Then $\lim_{h\to 0} \frac{f(0+h)-f(0)}{h} = \lim_{h\to 0} \frac{|h|}{h}$. Let $x_n = \frac{1}{n}$ and $y_n = -\frac{1}{n}$. Then $x_n \to 0$ and $y_n \to 0$. But $\frac{|x_n|}{x_n} \to 1$ and $\frac{|y_n|}{y_n} \to -1$. Hence, $\lim_{h\to 0} \frac{|h|}{h}$ does not exist, and therefore, f is not differentiable at 0. On the other hand, verify that f is differentiable at each $c \in \mathbb{R}$, $c \neq 0$, and f'(c) = 1 if c > 0 and f'(c) = -1 if c < 0.
- (2) Let $f(x) = x^2 \sin \frac{1}{x}$ when $x \neq 0$ and f(0) = 0. At the point 0, $\lim_{h \to 0} \frac{f(0+h) f(0)}{h} = \lim_{h \to 0} \frac{h^2 \sin(1/h)}{h} = 0$ (Why?). Thus, f is differentiable at 0. It is clear that f

DIFFERENTIABILITY

differentiable at other points as it is the product of two differentiable functions, and $f'(x) = 2x \sin \frac{1}{x} - \cos \frac{1}{x}$. Is the function f' differentiable at 0.

1. PROPERTIES OF DERIVATIVES

The following result gives a powerful, and a very simple characterization of differentiability of a function at a point

Proposition 3 (Carathéodory's Lemma). The function $f : J \to \mathbb{R}$ is differentiable at c iff \exists a function $f_1 : J \to \mathbb{R}$ such that

$$f(x) - f(c) = (x - c)f_1(x),$$
(1)

and f_1 is continuous at c. In such a case, $f'(c) = f_1(c)$.

Proof. (\Rightarrow) Define $f_1: J \to \mathbb{R}$ by

$$f_1(x) = \begin{cases} \frac{f(x) - f(c)}{x - c}, & \text{if } x \in J \setminus \{c\}, \\ f'(c), & \text{if } x = c. \end{cases}$$

Then f_1 satisfies the required properties.

(\Leftarrow) Putting x = c + h in Equation (1), we have

$$\lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0} f_1(c+h) = f_1(c).$$

Thus, f is differentiable at c and $f'(c) = f_1(c)$.

The function f_1 is called an increment function associated with f and c.

Corollary 4. If $f: J \to \mathbb{R}$ is differentiable at $c \in J$, then f is continuous at c.

Theorem 5 (Algebra of Differentiable Functions). Let $f, g : J \to \mathbb{R}$ be differentiable at $c \in J$. Then the following hold:

- (1) f + g is differentiable at c with (f + g)'(c) = f'(c) + g(c).
- (2) αf is differentiable at c with $(\alpha f)'(c) = \alpha f'(c)$ for any $\alpha \in \mathbb{R}$.
- (3) fg is differentiable at c with (fg)'(c) = f(c)g'(c) + f'(c)g(c).
- (4) If f is differentiable at c with $f'(c) \neq 0$, then $\frac{1}{f}$ is differentiable at c and $(\frac{1}{f})'(c) = -\frac{f'(c)}{f(c)^2}$.

Corollary 6. Let D(J) (respectively C(J)) denotes the set of differentiable (respectively continuous) functions on J. Then D(J) is a vector subspace of C(J).

To find the derivative of a composite function u = g(y) where y = f(x), we use the Chain rule or Substitution rule. Roughly speaking, the Chain rule is $\frac{du}{dx} = \frac{du}{dy} \cdot \frac{dy}{dx}$. Can you cancel out dy? Then there would be nothing to prove!

Theorem 7 (Chain Rule). Let $f : J \to \mathbb{R}$ and $g : J_1 \to \mathbb{R}$ be functions such that $f(J) \subset J_1$, an interval. If f is differentiable at c, and g is differentiable at f(c) then $g \circ f$ is differentiable at c and $(g \circ f)'(c) = g'(f(c)) \cdot f'(c)$.

Proof. Let $f_1 : J \to \mathbb{R}$ be the increment function associated with f and c, and let $g_1 : J_1 \to \mathbb{R}$ be the increment function associated with g and f(c). Then

$$f(x) - f(c) = (x - c)f_1(x) \ \forall \ x \in J, \ g(y) - g(f(c)) = (y - f(c))g_1(y) \ \forall \ y \in J_1.$$

Since $f(J) \subset J_1$, from the above equations we have

$$g(f(x)) - g(f(c)) = [f(x) - f(c)]g_1(f(x)) = (x - c)g_1(f(x))f_1(x) \ \forall \ x \in J.$$

We see that the function $(g_1 \circ f) \cdot f_1 : J \to \mathbb{R}$ is continuous at c (How?). Therefore, by Carathéodory's Lemma, $g \circ f$ is differentiable at c and $(g \circ f)'(c) = g_1(f(c))f_1(c) = g'(f(c))f'(c)$.

Problem 8. Let $f : (0, \infty) \to \mathbb{R}$ satisfy f(xy) = f(x) + f(y) for all $x, y \in (0, \infty)$. Suppose f is differentiable at x = 1. Show that f is differentiable at every $x \in (0, \infty)$. Find out f'(x).

Solution. We first observe that f(1) = 0, $f(\frac{1}{x}) = -f(x)$ and $f(\frac{x}{y}) = f(x) - f(y)$. Now,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{1}{h} f\left(\frac{x+h}{x}\right) = \lim_{k \to 0} \frac{f(1+k)}{kx}$$
$$= \frac{1}{x} \lim_{k \to 0} \frac{f(1+k) - f(1)}{k} = \frac{1}{x} f'(1).$$

- E		-
	 	┛