DIFFERENTIABILITY

The basic idea of differential calculus is to study the local behaviour of a function at a point by its first order (linear) approximation at the same point.

Throughout J will denote an interval, and $c \in J$. Let $f: J \rightarrow \mathbb{R}$ be a function. We want to approximate $f(x)$ for x near c. If $E(x)=f(x)-a-b(x-c)$ is the error by taking the value of $f(x)$ as $a+b(x-c)$ near c, we want the error to go to zero much faster than x goes to c. That is, $\lim _{x \rightarrow c} \frac{f(x)-a-b(x-c)}{x-c}=0$. If this is true, then $\lim _{x \rightarrow c}(f(x)-a-b(x-c))=0$ (Why?). This implies that $\lim _{x \rightarrow c} f(x)=a$. If f is continuous at c, then $f(c)=a$. Thus, we can approximate f at c if there exists a real number b such that $\lim _{x \rightarrow c} \frac{f(x)-f(c))}{x-c}=b$. If this happens, we say that f is differentiable at c, and denote the real number b by $f^{\prime}(c)$.

Definition 1. Let $f: J \rightarrow \mathbb{R}$. Then f is said to be differentiable at c if $\exists b \in \mathbb{R}$ such that $\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=b$. In this case, the value of the limit, that is, b is denoted by $f^{\prime}(c)$ and is called the derivative of f at c.

If f is differentiable at every point of J, we say that f is differentiable on J. In such a case, we obtain a new function from J to \mathbb{R} given by $c \mapsto f^{\prime}(c)$. This function is denoted by f^{\prime} and is called the derivative function of f. We sometime denote f^{\prime} by $\frac{d f}{d x}$ or $\frac{d y}{d x}$ when $y=f(x)$. Likewise, $f^{\prime}(c)$ is often denoted by $\left.\frac{d f}{d x}\right|_{x=c}$ or $\left.\frac{d y}{d x}\right|_{x=c}$.

Remark 2. (1) In $\epsilon-\delta$ form, we say that f is differentiable at c if for every $\epsilon>0$, $\exists a \delta>0$ such that

$$
x \in J, 0<|x-c|<\delta \Rightarrow|f(x)-f(c)-b(x-c)|<\epsilon|x-c| .
$$

(2) It is useful to use the variable h for the increment $x-c$. So, f is differentiable at c, if $\exists b \in \mathbb{R}$ such that $\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}=b$.

Examples

(1) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=|x|$. Then $\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{|h|}{h}$. Let $x_{n}=\frac{1}{n}$ and $y_{n}=-\frac{1}{n}$. Then $x_{n} \rightarrow 0$ and $y_{n} \rightarrow 0$. But $\frac{\left|x_{n}\right|}{x_{n}} \rightarrow 1$ and $\frac{\left|y_{n}\right|}{y_{n}} \rightarrow-1$. Hence, $\lim _{h \rightarrow 0} \frac{|h|}{h}$ does not exist, and therefore, f is not differentiable at 0 . On the other hand, verify that f is differentiable at each $c \in \mathbb{R}, c \neq 0$, and $f^{\prime}(c)=1$ if $c>0$ and $f^{\prime}(c)=-1$ if $c<0$.
(2) Let $f(x)=x^{2} \sin \frac{1}{x}$ when $x \neq 0$ and $f(0)=0$. At the point $0, \lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=$ $\lim _{h \rightarrow 0} \frac{h^{2} \sin (1 / h)}{h}=0$ (Why?). Thus, f is differentiable at 0 . It is clear that f
differentiable at other points as it is the product of two differentiable functions, and $f^{\prime}(x)=2 x \sin \frac{1}{x}-\cos \frac{1}{x}$. Is the function f^{\prime} differentiable at 0 .

1. Properties of Derivatives

The following result gives a powerful, and a very simple characterization of differentiability of a function at a point

Proposition 3 (Carathéodory's Lemma). The function $f: J \rightarrow \mathbb{R}$ is differentiable at c iff \exists a function $f_{1}: J \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
f(x)-f(c)=(x-c) f_{1}(x), \tag{1}
\end{equation*}
$$

and f_{1} is continuous at c. In such a case, $f^{\prime}(c)=f_{1}(c)$.
Proof. (\Rightarrow) Define $f_{1}: J \rightarrow \mathbb{R}$ by

$$
f_{1}(x)= \begin{cases}\frac{f(x)-f(c)}{x-c}, & \text { if } x \in J \backslash\{c\}, \\ f^{\prime}(c), & \text { if } x=c\end{cases}
$$

Then f_{1} satisfies the required properties.
(\Leftarrow) Putting $x=c+h$ in Equation (11), we have

$$
\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}=\lim _{h \rightarrow 0} f_{1}(c+h)=f_{1}(c) .
$$

Thus, f is differentiable at c and $f^{\prime}(c)=f_{1}(c)$.
The function f_{1} is called an increment function associated with f and c.
Corollary 4. If $f: J \rightarrow \mathbb{R}$ is differentiable at $c \in J$, then f is continuous at c.
Theorem 5 (Algebra of Differentiable Functions). Let $f, g: J \rightarrow \mathbb{R}$ be differentiable at $c \in J$. Then the following hold:
(1) $f+g$ is differentiable at c with $(f+g)^{\prime}(c)=f^{\prime}(c)+g(c)$.
(2) αf is differentiable at c with $(\alpha f)^{\prime}(c)=\alpha f^{\prime}(c)$ for any $\alpha \in \mathbb{R}$.
(3) $f g$ is differentiable at c with $(f g)^{\prime}(c)=f(c) g^{\prime}(c)+f^{\prime}(c) g(c)$.
(4) If f is differentiable at c with $f^{\prime}(c) \neq 0$, then $\frac{1}{f}$ is differentiable at c and $\left(\frac{1}{f}\right)^{\prime}(c)=$ $-\frac{f^{\prime}(c)}{f(c)^{2}}$.

Corollary 6. Let $D(J)$ (respectively $C(J)$) denotes the set of differentiable (respectively continuous) functions on J. Then $D(J)$ is a vector subspace of $C(J)$.

To find the derivative of a composite function $u=g(y)$ where $y=f(x)$, we use the Chain rule or Substitution rule. Roughly speaking, the Chain rule is $\frac{d u}{d x}=\frac{d u}{d y} \cdot \frac{d y}{d x}$. Can you cancel out $d y$? Then there would be nothing to prove!

Theorem 7 (Chain Rule). Let $f: J \rightarrow \mathbb{R}$ and $g: J_{1} \rightarrow \mathbb{R}$ be functions such that $f(J) \subset J_{1}$, an interval. If f is differentiable at c, and g is differentiable at $f(c)$ then $g \circ f$ is differentiable at c and $(g \circ f)^{\prime}(c)=g^{\prime}(f(c)) \cdot f^{\prime}(c)$.

Proof. Let $f_{1}: J \rightarrow \mathbb{R}$ be the increment function associated with f and c, and let g_{1} : $J_{1} \rightarrow \mathbb{R}$ be the increment function associated with g and $f(c)$. Then

$$
f(x)-f(c)=(x-c) f_{1}(x) \forall x \in J, g(y)-g(f(c))=(y-f(c)) g_{1}(y) \forall y \in J_{1} .
$$

Since $f(J) \subset J_{1}$, from the above equations we have

$$
g(f(x))-g(f(c))=[f(x)-f(c)] g_{1}(f(x))=(x-c) g_{1}(f(x)) f_{1}(x) \forall x \in J
$$

We see that the function $\left(g_{1} \circ f\right) \cdot f_{1}: J \rightarrow \mathbb{R}$ is continuous at c (How?). Therefore, by Carathéodory's Lemma, $g \circ f$ is differentiable at c and $(g \circ f)^{\prime}(c)=g_{1}(f(c)) f_{1}(c)=$ $g^{\prime}(f(c)) f^{\prime}(c)$.

Problem 8. Let $f:(0, \infty) \rightarrow \mathbb{R}$ satisfy $f(x y)=f(x)+f(y)$ for all $x, y \in(0, \infty)$. Suppose f is differentiable at $x=1$. Show that f is differentiable at every $x \in(0, \infty)$. Find out $f^{\prime}(x)$.

Solution. We first observe that $f(1)=0, f\left(\frac{1}{x}\right)=-f(x)$ and $f\left(\frac{x}{y}\right)=f(x)-f(y)$. Now,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{1}{h} f\left(\frac{x+h}{x}\right)=\lim _{k \rightarrow 0} \frac{f(1+k)}{k x} \\
& =\frac{1}{x} \lim _{k \rightarrow 0} \frac{f(1+k)-f(1)}{k}=\frac{1}{x} f^{\prime}(1) .
\end{aligned}
$$

