
DIFFERENTIABILITY

The basic idea of differential calculus is to study the local behaviour of a function at a

point by its first order (linear) approximation at the same point.

Throughout J will denote an interval, and c ∈ J . Let f : J → R be a function. We want

to approximate f(x) for x near c. If E(x) = f(x)− a− b(x− c) is the error by taking the

value of f(x) as a+b(x−c) near c, we want the error to go to zero much faster than x goes

to c. That is, limx→c
f(x)−a−b(x−c)

x−c
= 0. If this is true, then limx→c(f(x)−a− b(x− c)) = 0

(Why?). This implies that limx→c f(x) = a. If f is continuous at c, then f(c) = a. Thus,

we can approximate f at c if there exists a real number b such that limx→c
f(x)−f(c))

x−c
= b.

If this happens, we say that f is differentiable at c, and denote the real number b by f ′(c).

Definition 1. Let f : J → R. Then f is said to be differentiable at c if ∃ b ∈ R such that

limx→c
f(x)−f(c)

x−c
= b. In this case, the value of the limit, that is, b is denoted by f ′(c) and

is called the derivative of f at c.

If f is differentiable at every point of J , we say that f is differentiable on J . In such a

case, we obtain a new function from J to R given by c 7→ f ′(c). This function is denoted

by f ′ and is called the derivative function of f . We sometime denote f ′ by df
dx

or dy
dx

when

y = f(x). Likewise, f ′(c) is often denoted by df
dx
|x=c or

dy
dx
|x=c.

Remark 2. (1) In ǫ − δ form, we say that f is differentiable at c if for every ǫ > 0,

∃ a δ > 0 such that

x ∈ J, 0 < |x− c| < δ ⇒ |f(x)− f(c)− b(x− c)| < ǫ|x− c|.

(2) It is useful to use the variable h for the increment x− c. So, f is differentiable at

c, if ∃ b ∈ R such that limh→0
f(c+h)−f(c)

h
= b.

Examples

(1) Let f : R → R defined by f(x) = |x|. Then limh→0
f(0+h)−f(0)

h
= limh→0

|h|
h
. Let

xn = 1
n
and yn = − 1

n
. Then xn → 0 and yn → 0. But |xn|

xn

→ 1 and |yn|
yn

→ −1.

Hence, limh→0
|h|
h
does not exist, and therefore, f is not differentiable at 0. On the

other hand, verify that f is differentiable at each c ∈ R, c 6= 0, and f ′(c) = 1 if

c > 0 and f ′(c) = −1 if c < 0.

(2) Let f(x) = x2 sin 1
x
when x 6= 0 and f(0) = 0. At the point 0, limh→0

f(0+h)−f(0)
h

=

limh→0
h2 sin(1/h)

h
= 0 (Why?). Thus, f is differentiable at 0. It is clear that f
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differentiable at other points as it is the product of two differentiable functions,

and f ′(x) = 2x sin 1
x
− cos 1

x
. Is the function f ′ differentiable at 0.

1. Properties of Derivatives

The following result gives a powerful, and a very simple characterization of differentia-

bility of a function at a point

Proposition 3 (Carathéodory’s Lemma). The function f : J → R is differentiable at c

iff ∃ a function f1 : J → R such that

f(x)− f(c) = (x− c)f1(x), (1)

and f1 is continuous at c. In such a case, f ′(c) = f1(c).

Proof. (⇒) Define f1 : J → R by

f1(x) =











f(x)−f(c)
x−c

, if x ∈ J \ {c},

f ′(c), if x = c.

Then f1 satisfies the required properties.

(⇐) Putting x = c+ h in Equation (1), we have

lim
h→0

f(c+ h)− f(c)

h
= lim

h→0
f1(c + h) = f1(c).

Thus, f is differentiable at c and f ′(c) = f1(c). �

The function f1 is called an increment function associated with f and c.

Corollary 4. If f : J → R is differentiable at c ∈ J , then f is continuous at c.

Theorem 5 (Algebra of Differentiable Functions). Let f, g : J → R be differentiable at

c ∈ J . Then the following hold:

(1) f + g is differentiable at c with (f + g)′(c) = f ′(c) + g(c).

(2) αf is differentiable at c with (αf)′(c) = αf ′(c) for any α ∈ R.

(3) fg is differentiable at c with (fg)′(c) = f(c)g′(c) + f ′(c)g(c).

(4) If f is differentiable at c with f ′(c) 6= 0, then 1
f
is differentiable at c and ( 1

f
)′(c) =

− f ′(c)
f(c)2

.

Corollary 6. Let D(J) (respectively C(J)) denotes the set of differentiable (respectively

continuous) functions on J . Then D(J) is a vector subspace of C(J).

To find the derivative of a composite function u = g(y) where y = f(x), we use the

Chain rule or Substitution rule. Roughly speaking, the Chain rule is du
dx

= du
dy

· dy
dx
. Can

you cancel out dy? Then there would be nothing to prove!
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Theorem 7 (Chain Rule). Let f : J → R and g : J1 → R be functions such that

f(J) ⊂ J1, an interval. If f is differentiable at c, and g is differentiable at f(c) then g ◦ f

is differentiable at c and (g ◦ f)′(c) = g′(f(c)) · f ′(c).

Proof. Let f1 : J → R be the increment function associated with f and c, and let g1 :

J1 → R be the increment function associated with g and f(c). Then

f(x)− f(c) = (x− c)f1(x) ∀ x ∈ J, g(y)− g(f(c)) = (y − f(c))g1(y) ∀ y ∈ J1.

Since f(J) ⊂ J1, from the above equations we have

g(f(x))− g(f(c)) = [f(x)− f(c)]g1(f(x)) = (x− c)g1(f(x))f1(x) ∀ x ∈ J.

We see that the function (g1 ◦ f) · f1 : J → R is continuous at c (How?). Therefore,

by Carathéodory’s Lemma, g ◦ f is differentiable at c and (g ◦ f)′(c) = g1(f(c))f1(c) =

g′(f(c))f ′(c). �

Problem 8. Let f : (0,∞) → R satisfy f(xy) = f(x)+f(y) for all x, y ∈ (0,∞). Suppose

f is differentiable at x = 1. Show that f is differentiable at every x ∈ (0,∞). Find out

f ′(x).

Solution. We first observe that f(1) = 0, f( 1
x
) = −f(x) and f(x

y
) = f(x)− f(y). Now,

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

1

h
f

(

x+ h

x

)

= lim
k→0

f(1 + k)

kx

=
1

x
lim
k→0

f(1 + k)− f(1)

k
=

1

x
f ′(1).
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