PROPERTIES OF CONTINUOUS FUNCTIONS

In this lecture will study the relations between the continuity of a function and its

several geometric properties. Throughout this lecture, J will denote an interval.

1. CONTINUITY AND BOUNDEDNESS

Definition 1. Let D CR and f : D — R be a function.
(1) f is said to be bounded above on D if 3 o € R such that f(z) < « for all x € D.

Any such « is called an upper bound for f.

(2) [ is said to be bounded below on D if 3 B € R such that f(x) > [ for all x € D.
Any such [ is called a lower bound for f.

(3) f is said to be bounded on D if it is bounded above on D and also bounded below
on D.

Remark 2. (1) f is bounded if and only if 3 v € R such that | f(z)| <~ for allz € D.
Such a v s called a bound for the absolute value of f.

(2) Geometrically, f is bounded above means that the graph of f lies below some hori-

zontal line, while f is bounded below means that its graph lies above some horizontal

line.

Examples

(1) Let f,g : R — R be two functions defined by f(z) = —2? and g(x) = x?. Then
f is bounded above and ¢ is bounded below on R. Neither of these functions is
bounded on R.

(2) f:R — R defined by f(z) = x§—il
0 < f(z) < 1. Moreover, the bounds 0 and 1 are optimal, i.e.,

is bounded on R. We can easily observe that

inf{f(z) : v € R} =0 and sup{f(x):z € R} = 1. (Prove!)

(3) In the above example, we see that the infimum of f is attained, i.e., 3¢ (=0) € R
such that inf{f(z) : = € R} = f(c). What to you think about the supremum? Is

it attained?

Definition 3. Let D CR and f : D — R be a function.

(1) f attains its upper bound on D if 3 ¢ € D such that sup{f(z) : z € R} = f(c).
(2) [ attains its lower bound on D if 3 d € D such that inf{f(z) : x € R} = f(d).

(3) [ attains its bounds on D if it attains its upper bound and lower bound on D.
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A bounded function need not be continuous. For example, the Dirichlet’s function
defined in Lecture 5 is bounded but not continuous. Also, a continuous function need not
be bounded. For instance, let Dy = [0,00) and fi(z) = « for x € Dy, or Dy = (0, 1] and
folz) = % for x € D,. It is clear that both f; and f; are continuous. The function f; is
unbounded because its domain D; is unbounded. To understand why f is unbounded,

we need the following concept.

Definition 4. Let D C R. We say that D is a closed set if

() any sequence in D and x, — v = x € D.

The interval (0,1] is not a closed set, since (%) € (0,1] and £ — 0, but 0 ¢ (0, 1]. The
interval [a, b] is closed. To see this, consider any sequence (x,) in [a, b] such that z,, — x.

Since a < x, < b and z,, — x, we have a < x < b (Why?). Hence [a, b] is a closed set.

Theorem 5. Let D be a closed and bounded subset of R, and f : D — R be a continuous

function. Then f is bounded and attains its bounds on D.

Proof. Suppose f is not bounded on D. Then for every n € N, 4 x,, € D such that
|f(x,)] > n (Why?). The sequence (x,) is bounded since D is bounded. By the Bolzano-
Weierstrass Theorem, (z,) has a convergent subsequence (z,, ). If z,, — z, then x € D
since D is closed. By the continuity of f, f(z,,) — f(x). Being convergent, the sequence
(f(xp,)) is bounded. This contradicts the fact that |f(x,, )| > ny for every £ € N and
ni — 0o as k — oo. Hence, f is bounded.

To show that f attains its bounds, let m = inf{f(x) : € D} and M = sup{f(z): z €
D} (Why m and M exist?). There exists a sequence (z,) in D such that f(z,) — M.
Since D is bounded, the sequence is bounded and has a convergent subsequence, say (x,, ).
Let x,, — x. Then x € D because D is closed. By the continuity of f, f(x,,) — f(z).
This implies that f(x) = M (Why?). Thus, f attains its upper bound. The proof for the

lower bound case is similar. O

2. CONTINUITY AND MONOTONICITY
Definition 6. f:J — R be a function.
(1) [ is monotonically increasing (strictly increasing) on J if

vy e d, v <y= f(r) < fy)(f(x) < fy)).

(2) [ is monotonically decreasing (strictly decreasing) on J if

vy ed, v <y= flz) > fy)(f(x) > [(y).
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(8) f is monotonic (strictly monotonic)) on J if f is either increasing (strictly in-

creasing) or decreasing (strictly decreasing) on J.

We can easily find an example of a function that is monotonic but not continuous.
For example, f(z) = [z] for z € R. (Exercise. Discuss the points of continuity of f).

Similarly, a continuous function may not be monotonic, f(x) = |z| for z € R.

Theorem 7. Let f : J — R be a function that is strictly monotonic on J. Then f~!:

f(J) = R is continuous.

Remark 8. (1) If f is strictly monotonic on J, then f is one-one and ils inverse
71 f(J) = R is well defined (Verify!).
(2) In the above theorem, the function f need not be continuous, and the range of f

need not be an interval.

Exercise 9. Consider the function f : R — R given by f(x) = x + [z]. Show that f is
strictly increasing on R and f~1 is continuous on f(R) even though f is not continuous

at any m € Z.

3. CONTINUITY AND INTERMEDIATE VALUE PROPERTY (IVP)

Let f : [a,b] — R be a continuous function such that f(a) and f(b) are of opposite
signs. If you draw the graphs of few such functions, you will see that the graph meets the

T-axis.

Theorem 10 (Intermediate Value Theorem). Let f : [a,b] — R be a continuous function

such that f(a) < XA < f(b). Then 3 ¢ € (a,b) such that f(c) = A.

3.1. Some Applications of IVP.

(1) Let f : [a,b] — R be a continuous function such that f(x) # 0 for any = € [a, b].
Then either f >0 or f < 0.

(2) Let f:R — R be continuous taking values in Z or in Q. Then f is constant.

(3) Let f : [a,b] — R be a non-constant continuous function. Then f([a,b]) is an
interval. To see this, let y1,y2 € f([a,b]). Assume y; < y < yo. We need to show
that y € f([a,b]). Let x1, 25 € [a,b] such that f(z1) = y1, f(z2) = yo. By IVP, 3

x between x; and x5 such that f(x) =y.

Theorem 11. Let f : J — R be a one-one continuous function. Then f is strictly

monotone.
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