
PROPERTIES OF CONTINUOUS FUNCTIONS

In this lecture will study the relations between the continuity of a function and its

several geometric properties. Throughout this lecture, J will denote an interval.

1. Continuity and Boundedness

Definition 1. Let D ⊆ R and f : D → R be a function.

(1) f is said to be bounded above on D if ∃ α ∈ R such that f(x) ≤ α for all x ∈ D.

Any such α is called an upper bound for f .

(2) f is said to be bounded below on D if ∃ β ∈ R such that f(x) ≥ β for all x ∈ D.

Any such β is called a lower bound for f .

(3) f is said to be bounded on D if it is bounded above on D and also bounded below

on D.

Remark 2. (1) f is bounded if and only if ∃ γ ∈ R such that |f(x)| ≤ γ for all x ∈ D.

Such a γ is called a bound for the absolute value of f .

(2) Geometrically, f is bounded above means that the graph of f lies below some hori-

zontal line, while f is bounded below means that its graph lies above some horizontal

line.

Examples

(1) Let f, g : R → R be two functions defined by f(x) = −x2 and g(x) = x2. Then

f is bounded above and g is bounded below on R. Neither of these functions is

bounded on R.

(2) f : R → R defined by f(x) = x2

x2+1
is bounded on R. We can easily observe that

0 ≤ f(x) < 1. Moreover, the bounds 0 and 1 are optimal, i.e.,

inf{f(x) : x ∈ R} = 0 and sup{f(x) : x ∈ R} = 1. (Prove!)

(3) In the above example, we see that the infimum of f is attained, i.e., ∃ c (= 0) ∈ R

such that inf{f(x) : x ∈ R} = f(c). What to you think about the supremum? Is

it attained?

Definition 3. Let D ⊆ R and f : D → R be a function.

(1) f attains its upper bound on D if ∃ c ∈ D such that sup{f(x) : x ∈ R} = f(c).

(2) f attains its lower bound on D if ∃ d ∈ D such that inf{f(x) : x ∈ R} = f(d).

(3) f attains its bounds on D if it attains its upper bound and lower bound on D.
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A bounded function need not be continuous. For example, the Dirichlet’s function

defined in Lecture 5 is bounded but not continuous. Also, a continuous function need not

be bounded. For instance, let D1 = [0,∞) and f1(x) = x for x ∈ D1, or D2 = (0, 1] and

f2(x) =
1

x
for x ∈ D2. It is clear that both f1 and f2 are continuous. The function f1 is

unbounded because its domain D1 is unbounded. To understand why f2 is unbounded,

we need the following concept.

Definition 4. Let D ⊆ R. We say that D is a closed set if

(xn) any sequence in D and xn → x ⇒ x ∈ D.

The interval (0, 1] is not a closed set, since ( 1
n
) ∈ (0, 1] and 1

n
→ 0, but 0 /∈ (0, 1]. The

interval [a, b] is closed. To see this, consider any sequence (xn) in [a, b] such that xn → x.

Since a ≤ xn ≤ b and xn → x, we have a ≤ x ≤ b (Why?). Hence [a, b] is a closed set.

Theorem 5. Let D be a closed and bounded subset of R, and f : D → R be a continuous

function. Then f is bounded and attains its bounds on D.

Proof. Suppose f is not bounded on D. Then for every n ∈ N, ∃ xn ∈ D such that

|f(xn)| > n (Why?). The sequence (xn) is bounded since D is bounded. By the Bolzano-

Weierstrass Theorem, (xn) has a convergent subsequence (xnk
). If xnk

→ x, then x ∈ D

since D is closed. By the continuity of f , f(xnk
) → f(x). Being convergent, the sequence

(f(xnk
)) is bounded. This contradicts the fact that |f(xnk

)| > nk for every k ∈ N and

nk → ∞ as k → ∞. Hence, f is bounded.

To show that f attains its bounds, let m = inf{f(x) : x ∈ D} and M = sup{f(x) : x ∈

D} (Why m and M exist?). There exists a sequence (xn) in D such that f(xn) → M .

Since D is bounded, the sequence is bounded and has a convergent subsequence, say (xnk
).

Let xnk
→ x. Then x ∈ D because D is closed. By the continuity of f , f(xnk

) → f(x).

This implies that f(x) = M (Why?). Thus, f attains its upper bound. The proof for the

lower bound case is similar. �

2. Continuity and Monotonicity

Definition 6. f : J → R be a function.

(1) f is monotonically increasing (strictly increasing) on J if

x, y ∈ J, x < y ⇒ f(x) ≤ f(y)(f(x) < f(y)).

(2) f is monotonically decreasing (strictly decreasing) on J if

x, y ∈ J, x < y ⇒ f(x) ≥ f(y)(f(x) > f(y)).
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(3) f is monotonic (strictly monotonic)) on J if f is either increasing (strictly in-

creasing) or decreasing (strictly decreasing) on J .

We can easily find an example of a function that is monotonic but not continuous.

For example, f(x) = [x] for x ∈ R. (Exercise. Discuss the points of continuity of f).

Similarly, a continuous function may not be monotonic, f(x) = |x| for x ∈ R.

Theorem 7. Let f : J → R be a function that is strictly monotonic on J . Then f−1 :

f(J) → R is continuous.

Remark 8. (1) If f is strictly monotonic on J , then f is one-one and its inverse

f−1 : f(J) → R is well defined (Verify!).

(2) In the above theorem, the function f need not be continuous, and the range of f

need not be an interval.

Exercise 9. Consider the function f : R → R given by f(x) = x + [x]. Show that f is

strictly increasing on R and f−1 is continuous on f(R) even though f is not continuous

at any m ∈ Z.

3. Continuity and Intermediate Value Property (IVP)

Let f : [a, b] → R be a continuous function such that f(a) and f(b) are of opposite

signs. If you draw the graphs of few such functions, you will see that the graph meets the

x-axis.

Theorem 10 (Intermediate Value Theorem). Let f : [a, b] → R be a continuous function

such that f(a) < λ < f(b). Then ∃ c ∈ (a, b) such that f(c) = λ.

3.1. Some Applications of IVP.

(1) Let f : [a, b] → R be a continuous function such that f(x) 6= 0 for any x ∈ [a, b].

Then either f > 0 or f < 0.

(2) Let f : R → R be continuous taking values in Z or in Q. Then f is constant.

(3) Let f : [a, b] → R be a non-constant continuous function. Then f([a, b]) is an

interval. To see this, let y1, y2 ∈ f([a, b]). Assume y1 < y < y2. We need to show

that y ∈ f([a, b]). Let x1, x2 ∈ [a, b] such that f(x1) = y1, f(x2) = y2. By IVP, ∃

x between x1 and x2 such that f(x) = y.

Theorem 11. Let f : J → R be a one-one continuous function. Then f is strictly

monotone.
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