PROPERTIES OF CONTINUOUS FUNCTIONS

In this lecture will study the relations between the continuity of a function and its several geometric properties. Throughout this lecture, J will denote an interval.

1. Continuity and Boundedness

Definition 1. Let $D \subseteq \mathbb{R}$ and $f: D \rightarrow \mathbb{R}$ be a function.
(1) f is said to be bounded above on D if $\exists \alpha \in \mathbb{R}$ such that $f(x) \leq \alpha$ for all $x \in D$. Any such α is called an upper bound for f.
(2) f is said to be bounded below on D if $\exists \beta \in \mathbb{R}$ such that $f(x) \geq \beta$ for all $x \in D$. Any such β is called a lower bound for f.
(3) f is said to be bounded on D if it is bounded above on D and also bounded below on D.

Remark 2. (1) f is bounded if and only if $\exists \gamma \in \mathbb{R}$ such that $|f(x)| \leq \gamma$ for all $x \in D$. Such $a \gamma$ is called a bound for the absolute value of f.
(2) Geometrically, f is bounded above means that the graph of f lies below some horizontal line, while f is bounded below means that its graph lies above some horizontal line.

Examples

(1) Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be two functions defined by $f(x)=-x^{2}$ and $g(x)=x^{2}$. Then f is bounded above and g is bounded below on \mathbb{R}. Neither of these functions is bounded on \mathbb{R}.
(2) $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\frac{x^{2}}{x^{2}+1}$ is bounded on \mathbb{R}. We can easily observe that $0 \leq f(x)<1$. Moreover, the bounds 0 and 1 are optimal, i.e.,

$$
\inf \{f(x): x \in \mathbb{R}\}=0 \text { and } \sup \{f(x): x \in \mathbb{R}\}=1 \text {. (Prove!) }
$$

(3) In the above example, we see that the infimum of f is attained, i.e., $\exists c(=0) \in \mathbb{R}$ such that $\inf \{f(x): x \in \mathbb{R}\}=f(c)$. What to you think about the supremum? Is it attained?

Definition 3. Let $D \subseteq \mathbb{R}$ and $f: D \rightarrow \mathbb{R}$ be a function.
(1) f attains its upper bound on D if $\exists c \in D$ such that $\sup \{f(x): x \in \mathbb{R}\}=f(c)$.
(2) f attains its lower bound on D if $\exists d \in D$ such that $\inf \{f(x): x \in \mathbb{R}\}=f(d)$.
(3) f attains its bounds on D if it attains its upper bound and lower bound on D.

A bounded function need not be continuous. For example, the Dirichlet's function defined in Lecture 5 is bounded but not continuous. Also, a continuous function need not be bounded. For instance, let $D_{1}=[0, \infty)$ and $f_{1}(x)=x$ for $x \in D_{1}$, or $D_{2}=(0,1]$ and $f_{2}(x)=\frac{1}{x}$ for $x \in D_{2}$. It is clear that both f_{1} and f_{2} are continuous. The function f_{1} is unbounded because its domain D_{1} is unbounded. To understand why f_{2} is unbounded, we need the following concept.

Definition 4. Let $D \subseteq \mathbb{R}$. We say that D is a closed set if

$$
\left(x_{n}\right) \text { any sequence in } D \text { and } x_{n} \rightarrow x \Rightarrow x \in D .
$$

The interval $(0,1]$ is not a closed set, since $\left(\frac{1}{n}\right) \in(0,1]$ and $\frac{1}{n} \rightarrow 0$, but $0 \notin(0,1]$. The interval $[a, b]$ is closed. To see this, consider any sequence $\left(x_{n}\right)$ in $[a, b]$ such that $x_{n} \rightarrow x$. Since $a \leq x_{n} \leq b$ and $x_{n} \rightarrow x$, we have $a \leq x \leq b$ (Why?). Hence $[a, b]$ is a closed set.

Theorem 5. Let D be a closed and bounded subset of \mathbb{R}, and $f: D \rightarrow \mathbb{R}$ be a continuous function. Then f is bounded and attains its bounds on D.

Proof. Suppose f is not bounded on D. Then for every $n \in \mathbb{N}, \exists x_{n} \in D$ such that $\left|f\left(x_{n}\right)\right|>n$ (Why?). The sequence $\left(x_{n}\right)$ is bounded since D is bounded. By the BolzanoWeierstrass Theorem, $\left(x_{n}\right)$ has a convergent subsequence $\left(x_{n_{k}}\right)$. If $x_{n_{k}} \rightarrow x$, then $x \in D$ since D is closed. By the continuity of $f, f\left(x_{n_{k}}\right) \rightarrow f(x)$. Being convergent, the sequence $\left(f\left(x_{n_{k}}\right)\right)$ is bounded. This contradicts the fact that $\left|f\left(x_{n_{k}}\right)\right|>n_{k}$ for every $k \in \mathbb{N}$ and $n_{k} \rightarrow \infty$ as $k \rightarrow \infty$. Hence, f is bounded.

To show that f attains its bounds, let $m=\inf \{f(x): x \in D\}$ and $M=\sup \{f(x): x \in$ $D\}$ (Why m and M exist?). There exists a sequence $\left(x_{n}\right)$ in D such that $f\left(x_{n}\right) \rightarrow M$. Since D is bounded, the sequence is bounded and has a convergent subsequence, say $\left(x_{n_{k}}\right)$. Let $x_{n_{k}} \rightarrow x$. Then $x \in D$ because D is closed. By the continuity of $f, f\left(x_{n_{k}}\right) \rightarrow f(x)$. This implies that $f(x)=M$ (Why?). Thus, f attains its upper bound. The proof for the lower bound case is similar.

2. Continuity and Monotonicity

Definition 6. $f: J \rightarrow \mathbb{R}$ be a function.
(1) f is monotonically increasing (strictly increasing) on J if

$$
x, y \in J, x<y \Rightarrow f(x) \leq f(y)(f(x)<f(y))
$$

(2) f is monotonically decreasing (strictly decreasing) on J if

$$
x, y \in J, x<y \Rightarrow f(x) \geq f(y)(f(x)>f(y)) .
$$

(3) f is monotonic (strictly monotonic)) on J if f is either increasing (strictly increasing) or decreasing (strictly decreasing) on J.

We can easily find an example of a function that is monotonic but not continuous. For example, $f(x)=[x]$ for $x \in \mathbb{R}$. (Exercise. Discuss the points of continuity of f). Similarly, a continuous function may not be monotonic, $f(x)=|x|$ for $x \in \mathbb{R}$.

Theorem 7. Let $f: J \rightarrow \mathbb{R}$ be a function that is strictly monotonic on J. Then f^{-1} : $f(J) \rightarrow \mathbb{R}$ is continuous.

Remark 8. (1) If f is strictly monotonic on J, then f is one-one and its inverse $f^{-1}: f(J) \rightarrow \mathbb{R}$ is well defined (Verify!).
(2) In the above theorem, the function f need not be continuous, and the range of f need not be an interval.

Exercise 9. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x+[x]$. Show that f is strictly increasing on \mathbb{R} and f^{-1} is continuous on $f(\mathbb{R})$ even though f is not continuous at any $m \in \mathbb{Z}$.

3. Continuity and Intermediate Value Property (IVP)

Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function such that $f(a)$ and $f(b)$ are of opposite signs. If you draw the graphs of few such functions, you will see that the graph meets the x-axis.

Theorem 10 (Intermediate Value Theorem). Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function such that $f(a)<\lambda<f(b)$. Then $\exists c \in(a, b)$ such that $f(c)=\lambda$.

3.1. Some Applications of IVP.

(1) Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function such that $f(x) \neq 0$ for any $x \in[a, b]$. Then either $f>0$ or $f<0$.
(2) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous taking values in \mathbb{Z} or in \mathbb{Q}. Then f is constant.
(3) Let $f:[a, b] \rightarrow \mathbb{R}$ be a non-constant continuous function. Then $f([a, b])$ is an interval. To see this, let $y_{1}, y_{2} \in f([a, b])$. Assume $y_{1}<y<y_{2}$. We need to show that $y \in f([a, b])$. Let $x_{1}, x_{2} \in[a, b]$ such that $f\left(x_{1}\right)=y_{1}, f\left(x_{2}\right)=y_{2}$. By IVP, \exists x between x_{1} and x_{2} such that $f(x)=y$.

Theorem 11. Let $f: J \rightarrow \mathbb{R}$ be a one-one continuous function. Then f is strictly monotone.

