LIMITS

In lecture 2, we have seen the definition of limit of a sequence. In this lecture, we shall define the concept of a limit of a function at a point in \mathbb{R} . For this, we must assume that the domain of the function satisfies certain conditions. Let $J \subseteq \mathbb{R}$ and $a \in \mathbb{R}$ such that J contains (a - r, a) and (a, a + r) for some r > 0. That is, the domain J contains an open interval around a except possibly the point a itself. So, in the sequel, when we write $f: J \to \mathbb{R}$, we always mean that J satisfies the above condition.

Definition 1. Let $f : J \to \mathbb{R}$ be a function. We say that $\lim_{x\to a} f(x)$ exists if there exists $\ell \in \mathbb{R}$ such that for every $\varepsilon > 0$, there exists $\delta > 0$ such that

$$x \in J \text{ and } 0 < |x - a| < \delta \Longrightarrow |f(x) - \ell| < \varepsilon.$$

If $\lim_{x\to a} f(x)$ exists, we say that the limit of the function f as x tends to a (or as $x \to a$) is ℓ and write $\lim_{x\to a} f(x) = \ell$.

Remark 2. Note that a need not be in the domain of f. Even if $a \in J$, ℓ need not be f(a), and if $\ell = f(a)$, this information is irrelevant to us.

Proposition 3. With the notation of Definition 1, the limit ℓ is unique.

Proof. Exercise.

Some properties of limits

The proof of the following theorem is similar to the proof of the Theorem 5 in lecture 5.

Theorem 4. $\lim_{x\to a} f(x) = \ell$ iff for every sequence (x_n) in $J \setminus \{a\}$ with $x_n \to a$, we have $f(x_n) \to \ell$.

Example 5. Let $f(x) = \cos \frac{1}{x}$, where $x \neq 0$. We show that $\lim_{x\to 0} f(x)$ does not exist. Indeed, consider $x_n = \frac{1}{\pi n}$ for $n \in \mathbb{N}$. Then $x_n \to 0$ but $f(x_n) = (-1)^n$ does not converge. Are we done here? Convince yourself that we are!

The following simple lemma is an analogue of the sandwich theorem for the limits of functions.

Lemma 6. Let f, g, h be defined on J. Assume that $f(x) \le h(x) \le g(x)$ for all $x \in J$, and $\lim_{x\to a} f(x) = \ell = \lim_{x\to a} g(x)$. Then $\lim_{x\to a} h(x) = \ell$.

Proof. Exercise.

We now relate the concepts of continuity and limit.

Proposition 7. Let $f : J \to \mathbb{R}$ be a function and $a \in J$. Then f is continuous at a iff $\lim_{x\to a} f(x)$ exists and is equal to f(a).

Theorem 8 (Algebra of Limits). Let $f, g : J \to \mathbb{R}$ be given and $\alpha \in \mathbb{R}$. Assume $\lim_{x\to a} f(x) = \ell$ and $\lim_{x\to a} g(x) = m$. Then

- (1) $\lim_{x \to a} (f+g)(x) = \ell + m.$
- (2) $\lim_{x \to a} (\alpha f)(x) = \alpha \ell.$
- (3) $\lim_{x \to a} (fg)(x) = \ell m.$
- (4) If $\ell \neq 0$, then $f(x) \neq 0$ for all $x \in (a \delta, a + \delta)$ for some $\delta > 0$, $x \neq a$. Moreover, $\lim_{x \to a} \left(\frac{1}{\ell}\right)(x) = \frac{1}{\ell}.$

One-sided and Infinite Limits

We now consider one-sided limits. In order to define one-sided limits such as $\lim_{x\to a^+} f(x)$, we need to restrict x to those x > a. That is

Definition 9 (Left and right hand limits). • $\lim_{x\to a^+} f(x) = \ell$ exists if for every $\varepsilon > 0$, there exists $\delta > 0$ such that

$$x > a, x \in J \text{ and } 0 < |x - a| < \delta \Longrightarrow |f(x) - \ell| < \varepsilon.$$

• $\lim_{x\to a^-} f(x) = \ell$ exists if for every $\varepsilon > 0$, there exists $\delta > 0$ such that

 $x < a, x \in J \text{ and } 0 < |x - a| < \delta \Longrightarrow |f(x) - \ell| < \varepsilon.$

The relationship between the one-sided limits and the limit $\lim_{x\to a} f(x)$ is given below.

Theorem 10. $\lim_{x\to a} f(x)$ exists iff $\lim_{x\to a^+} f(x)$ and $\lim_{x\to a^-} f(x)$ exist and are equal.

Definition 11 (Limits at infinity). • Let $f : (a, \infty) \to \mathbb{R}$. We say that a limit of fas x tends to infinity exists

if there is a real number ℓ such that for every $\varepsilon > 0$, there exists $r \in \mathbb{R}$ such that for x > r we have $|f(x) - \ell| < \varepsilon$.

We then write $f(x) \to \ell$ as $x \to \infty$ or $\lim_{x\to\infty} f(x) = \ell$.

In terms of sequences,

 $\lim_{x\to\infty} f(x) = \ell \text{ iff for any sequence } (x_n) \text{ in } (a,\infty) \text{ such that } x_n \to \infty, \text{ we have } f(x_n) \to \ell.$

• Let $f : (-\infty, a) \to \mathbb{R}$. We say that $\lim_{x \to -\infty} f(x) = \ell$ if for every $\varepsilon > 0$, there exists $s \in \mathbb{R}$ such that for x < s we have $|f(x) - \ell| < \varepsilon$.

Definition 12 (infinite limits). • Let $f : J \to \mathbb{R}$. We say that $\lim_{x\to a} f(x) = \infty$ if for every p > 0, there exists $\delta > 0$ such that $x \in J$ and $0 < |x-a| < \delta \Longrightarrow f(x) > p$.

• Let $f: J \to \mathbb{R}$. We say that $\lim_{x \to a} f(x) = -\infty$ if for every s < 0, there exists $\delta > 0$ such that $x \in J$ and $0 < |x - a| < \delta \Longrightarrow f(x) < s$.

Exercise 13. Formulate a definition for the statements

$$\lim_{x \to \infty} f(x) = \infty \text{ and } \lim_{x \to 0^+} f(x) = -\infty.$$

Example 14. $\lim_{x\to 0^+} \frac{1}{x} = \infty$. Let r > 0. Choose $0 < \delta < \frac{1}{r}$. Then for $0 < x < \delta$, we have $f(x) = \frac{1}{x} > r$.

Asymptotes

The concept of a limit at $\pm \infty$ is useful in considering asymptotes of curves. Roughly speaking, a straight line is considered to be an asymptote of a curve if it comes arbitrarily close to that curve. We use this information to draw a graph of a curve.

Definition 15. Let $f : J \to \mathbb{R}$ be a function.

• A straight line y = b, $b \in \mathbb{R}$, is called **horizontal asymptote** of the curve y = f(x) if either

$$\lim_{x \to \infty} f(x) = b \text{ or } \lim_{x \to -\infty} f(x) = b.$$

• A straight line y = ax + b, where $a, b \in \mathbb{R}$ and $a \neq 0$, is called **oblique asymptote** of the curve y = f(x) if either

$$\lim_{x \to \infty} (f(x) - ax) = b \text{ or } \lim_{x \to -\infty} (f(x) - ax) = b.$$

• A straight line $x = c, c \in \mathbb{R}$, is called **vertical asymptote** of the curve y = f(x) if one or more of the following holds:

$$f(x) \to \infty \text{ as } x \to c^-, \ f(x) \to -\infty \text{ as } x \to c^-,$$
$$f(x) \to \infty \text{ as } x \to c^+, \ f(x) \to -\infty \text{ as } x \to c^+.$$

Example. Let $f: (-\infty, 0) \cup (1, \infty) \to \mathbb{R}$ be defined as

$$f(x) = \begin{cases} \frac{2x-1}{x-1} & \text{if } x > 1, \\ \frac{3x^2+4x+1}{x} & \text{if } x < 0. \end{cases}$$

For x > 1, $f(x) = 2 + \frac{1}{x-1}$, and so $\lim_{x\to\infty} f(x) = 2$. Therefore, the straight line y = 2 is a horizontal asymptote of the curve y = f(x).

Also, as $x \to 1^+$, $f(x) \to \infty$. Hence, the straight line x = 1 is a vertical asymptote of the curve y = f(x).

For x < 0, $f(x) = 3x + 4 + \frac{1}{x}$. Thus, $\lim_{x\to\infty}(f(x) - 3x) = 4$. It follows that the y = 3x + 4 is an oblique asymptote of the curve y = f(x). Moreover, $f(x) \to -\infty$ as $x \to 0^-$. Hence, the straight line given by x = 0 is a vertical asymptote of the curve y = f(x). The graph of f is shown below.

