CONTINUITY

In the previous lectures we studied real sequences, that is, real-valued functions defined on the subset \mathbb{N} of \mathbb{R} . In this lecture we will consider real-valued functions whose domains are arbitrary subsets of \mathbb{R} .

Continuity of Functions

We first introduce the notion of continuity and see few examples.

Definition 1 ($\varepsilon - \delta$ Definition¹). Let $J \subset \mathbb{R}$. Let $f : J \to \mathbb{R}$ and $a \in J$. We say that f is continuous at a if for every $\varepsilon > 0$, there exists $a \delta > 0$ such that $|f(x) - f(a)| < \varepsilon$ whenever $x \in J$ and $|x - a| < \delta$.

If f is continuous at each $a \in J$, then we say that f is continuous on J.

Remark 2. The basic idea to show the continuity of f at a point a is to obtain an estimate of the form

$$|f(x) - f(a)| \le K_a |x - a|,$$

where K_a is a constant which may depend on a. This may not work always.

Examples.

• Let $f : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = x. We want to prove that f is continuous on \mathbb{R} .

To check the continuity at any point $a \in \mathbb{R}$, we need to estimate |f(x) - f(a)| = |x - a|. If $\varepsilon > 0$ is given, we wish to find a $\delta > 0$ such that If $|x - a| < \delta \Longrightarrow |f(x) - f(a)| = |x - a| < \varepsilon$. This suggests that we may take $\delta = \varepsilon$. Now, how do you write in the exam!!??

Let $a \in \mathbb{R}$ and $\varepsilon > 0$. Let $\delta = \varepsilon$. Then for any x with $|x - a| < \delta$, we have $|f(x) - f(a)| = |x - a| < \delta = \varepsilon$. Thus, f is continuous at $a \in \mathbb{R}$. Since a is arbitrary, we conclude that f is continuous on \mathbb{R} .

• Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$. Let $a \in \mathbb{R}$ and $\varepsilon > 0$. We choose a $\delta < \min\{1, \frac{\varepsilon}{1+2|a|}\}$. For $x \in \mathbb{R}$ such that $|x - a| < \delta$, we have |x - a| < 1 so that

¹Epsilon-delta proofs are first found in the works of Cauchy. The formal $\varepsilon - \delta$ definition of continuity is attributed to Bolzano and Weierstrass. For more details see [1].

 $|x| \le |x-a| + |a| < 1 + |a|$. Now,

$$|f(x) - f(a)| = |x^2 - a^2| = |x + a||x - a|$$

$$\leq (|x| + |a|)|x - a|$$

$$\leq (1 + 2|a|)|x - a|$$

$$< (1 + 2|a|)\delta < \varepsilon.$$

Thus, f is continuous at a and hence on \mathbb{R} .

But now you might be wondering: how did we know in advance that such a δ will work. For this we have to go back to Remark 2. We want an estimate of the form $|f(x) - f(a)| \leq K_a |x - a|$. So,

$$|f(x) - f(a)| = |x^2 - a^2| = |x + a||x - a| \le (|x| + |a|)|x - a|.$$
(1)

We need to estimate |x| in terms of a. Suppose we have already found a δ that works. This implies that $|x| \leq |x - a| + |a| < \delta + |a|$. We know that if a δ works, then any $\delta' \leq \delta$ also works. Assume $\delta < 1$ (If we find a $\delta > 1$, we can choose the minimum of this δ and 1). It follows that |x| < 1 + |a|. Equation (1) now becomes

$$|f(x) - f(a)| \le (|x| + |a|)|x - a| \le (1 + 2|a|)|x - a|.$$

Therefore, if we make sure that $(1+2|a|)|x-a| < \varepsilon$, we get $|f(x) - f(a)| < \varepsilon$. In other words, we have to ensure that $|x-a| < \frac{\varepsilon}{1+2|a|}$. We also wanted |x| < 1+|a|. Thus, we need to take $\delta < \min\{1, \frac{\varepsilon}{1+2|a|}\}$.

Exercise 3. Using $\varepsilon - \delta$ argument, prove that the following functions are continuous.

- (1) For a > 0, let $f : [-a, a] \to \mathbb{R}$ be defined as $f(x) = x^2$.
- (2) For a > 0, let $f : (a, \infty) \to \mathbb{R}$ be defined as $f(x) = \frac{1}{x}$.

Sequential Criterion for Continuity

We can characterize continuity of a function using the theory of sequence limits. The next result provides a very useful criterion to check continuity of a function at a point.

Theorem 4. Let $a \in J$, and let $f : J \to \mathbb{R}$ be a function. Then f is continuous at a if and only if for every sequence (x_n) in J with $x_n \to a$, we have $f(x_n) \to f(a)$.

Proof. Suppose f is continuous at a and $x_n \to a$. Let $\varepsilon > 0$. Then there exists a $\delta > 0$ such that $|f(x) - f(a)| < \varepsilon$ whenever $|x - a| < \delta$. Since $x_n \to a$, for this $\delta > 0$, there exists a positive integer N such that $|x_n - a| < \delta$ for all $n \ge N$. This N serves our purpose. That is, for all $n \ge N$,

$$|x_n - a| < \delta \Longrightarrow |f(x_n) - f(a)| < \varepsilon \Longrightarrow f(x_n) \to f(a).$$

CONTINUITY

For the converse, let us assume that f is not continuous at a. Then there exists $\varepsilon > 0$ for which no $\delta > 0$ will satisfy the required $(\varepsilon - \delta)$ condition. For each $\delta = \frac{1}{n}$, $n \in \mathbb{N}$, there exist x_n such that $|x_n - a| < \frac{1}{n}$ with $|f(x_n) - f(a)| \ge \varepsilon$. This implies that $x_n \to a$ but $f(x_n) \nrightarrow f(a)$. This contradicts our hypothesis. Hence f is continuous at a. \Box

Example 5. • Let $f : \mathbb{R} \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} 1, & \text{if } x \in \mathbb{Q}, \\ 0, & \text{otherwise.} \end{cases}$$

This is known as Dirichlet's function. This function is not continuous at any point of \mathbb{R} .

Let $a \in \mathbb{Q}$. Choose a sequence of irrational numbers (x_n) converging to a. Then $f(x_n) = 0 \nleftrightarrow f(a) = 1$. Similarly, if $a \notin \mathbb{Q}$, we choose a sequence of rational numbers (x_n) converging to a. Then $f(x_n) = 1 \nleftrightarrow f(a) = 0$. So, f is not continuous at any $a \in \mathbb{R}$.

• Let $f:[0,\infty) \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} 1, & \text{if } x = 0, \\ 1/q, & \text{if } x = p/q, \text{ where } p, q \in \mathbb{N} \text{ and } p, q \text{ have no common factors,} \\ 0, & \text{if } x \text{ is irrational.} \end{cases}$$

This function is known as Thomae's function. It is discontinuous at every rational in $[0, \infty]$. Let $a \in \mathbb{Q}$. Choose a sequence of irrational numbers (x_n) converging to a. Then $f(x_n) = 0 \nleftrightarrow f(a)$ as $f(a) \neq 0$. What happens at irrational numbers?

Problem 6. Let $f : \mathbb{R} \to (0, \infty)$ be a function which satisfies f(x+y) = f(x)f(y) for all $x, y \in \mathbb{R}$. If f is continuous at 0, show that f is continuous at every $a \in \mathbb{R}$.

Solution. Since $f(0) = f(0)^2$, we have f(0) = 1. Moreover, $f(x-x) = f(x)f(-x) \Longrightarrow$ $f(-x) = \frac{1}{f(x)}$. Let $a \in \mathbb{R}$ and $x_n \to a$. It follows that $x_n - a \to 0$. As f is continuous at 0, $f(x_n - a) \to f(0) = 1$. But $f(x_n - a) = f(x_n)f(-a) = \frac{f(x_n)}{f(a)} \to 1$. This implies that $f(x_n) \to f(a)$ (Why?). Hence f is continuous at a.

References

 Judith V. Grabiner, The Origins of Cauchy's Rigorous Calculus, United States, Dover Publications, 2012.