CONTINUITY

In the previous lectures we studied real sequences, that is, real-valued functions defined on the subset \mathbb{N} of \mathbb{R}. In this lecture we will consider real-valued functions whose domains are arbitrary subsets of \mathbb{R}.

Continuity of Functions

We first introduce the notion of continuity and see few examples.

Definition 1 ($\varepsilon-\delta$ Definition긱). Let $J \subset \mathbb{R}$. Let $f: J \rightarrow \mathbb{R}$ and $a \in J$. We say that f is continuous at a if for every $\varepsilon>0$, there exists a $\delta>0$ such that $|f(x)-f(a)|<\varepsilon$ whenever $x \in J$ and $|x-a|<\delta$.

If f is continuous at each $a \in J$, then we say that f is continuous on J.

Remark 2. The basic idea to show the continuity of f at a point a is to obtain an estimate of the form

$$
|f(x)-f(a)| \leq K_{a}|x-a|,
$$

where K_{a} is a constant which may depend on a. This may not work always.

Examples.

- Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x$. We want to prove that f is continuous on \mathbb{R}.

To check the continuity at any point $a \in \mathbb{R}$, we need to estimate $|f(x)-f(a)|=$ $|x-a|$. If $\varepsilon>0$ is given, we wish to find a $\delta>0$ such that If $|x-a|<\delta \Longrightarrow$ $|f(x)-f(a)|=|x-a|<\varepsilon$. This suggests that we may take $\delta=\varepsilon$. Now, how do you write in the exam!!??

Let $a \in \mathbb{R}$ and $\varepsilon>0$. Let $\delta=\varepsilon$. Then for any x with $|x-a|<\delta$, we have $|f(x)-f(a)|=|x-a|<\delta=\varepsilon$. Thus, f is continuous at $a \in \mathbb{R}$. Since a is arbitrary, we conclude that f is continuous on \mathbb{R}.

- Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{2}$. Let $a \in \mathbb{R}$ and $\varepsilon>0$. We choose a $\delta<\min \left\{1, \frac{\varepsilon}{1+2|a|}\right\}$. For $x \in \mathbb{R}$ such that $|x-a|<\delta$, we have $|x-a|<1$ so that

[^0]\[

$$
\begin{aligned}
& |x| \leq|x-a|+|a|<1+|a| . \text { Now, } \\
& \qquad \begin{aligned}
|f(x)-f(a)|=\left|x^{2}-a^{2}\right| & =|x+a||x-a| \\
& \leq(|x|+|a|)|x-a| \\
& \leq(1+2|a|)|x-a| \\
& <(1+2|a|) \delta<\varepsilon .
\end{aligned}
\end{aligned}
$$
\]

Thus, f is continuous at a and hence on \mathbb{R}.
But now you might be wondering: how did we know in advance that such a δ will work. For this we have to go back to Remark 2. We want an estimate of the form $|f(x)-f(a)| \leq K_{a}|x-a|$. So,

$$
\begin{equation*}
|f(x)-f(a)|=\left|x^{2}-a^{2}\right|=|x+a||x-a| \leq(|x|+|a|)|x-a| . \tag{1}
\end{equation*}
$$

We need to estimate $|x|$ in terms of a. Suppose we have already found a δ that works. This implies that $|x| \leq|x-a|+|a|<\delta+|a|$. We know that if a δ works, then any $\delta^{\prime} \leq \delta$ also works. Assume $\delta<1$ (If we find a $\delta>1$, we can choose the minimum of this δ and 1). It follows that $|x|<1+|a|$. Equation (1) now becomes

$$
|f(x)-f(a)| \leq(|x|+|a|)|x-a| \leq(1+2|a|)|x-a| .
$$

Therefore, if we make sure that $(1+2|a|)|x-a|<\varepsilon$, we get $|f(x)-f(a)|<\varepsilon$. In other words, we have to ensure that $|x-a|<\frac{\varepsilon}{1+2|a|}$. We also wanted $|x|<1+|a|$. Thus, we need to take $\delta<\min \left\{1, \frac{\varepsilon}{1+2|a|}\right\}$.

Exercise 3. Using $\varepsilon-\delta$ argument, prove that the following functions are continuous.
(1) For $a>0$, let $f:[-a, a] \rightarrow \mathbb{R}$ be defined as $f(x)=x^{2}$.
(2) For $a>0$, let $f:(a, \infty) \rightarrow \mathbb{R}$ be defined as $f(x)=\frac{1}{x}$.

Sequential Criterion for Continuity

We can characterize continuity of a function using the theory of sequence limits. The next result provides a very useful criterion to check continuity of a function at a point.

Theorem 4. Let $a \in J$, and let $f: J \rightarrow \mathbb{R}$ be a function. Then f is continuous at a if and only if for every sequence $\left(x_{n}\right)$ in J with $x_{n} \rightarrow a$, we have $f\left(x_{n}\right) \rightarrow f(a)$.

Proof. Suppose f is continuous at a and $x_{n} \rightarrow a$. Let $\varepsilon>0$. Then there exists a $\delta>0$ such that $|f(x)-f(a)|<\varepsilon$ whenever $|x-a|<\delta$. Since $x_{n} \rightarrow a$, for this $\delta>0$, there exists a positive integer N such that $\left|x_{n}-a\right|<\delta$ for all $n \geq N$. This N serves our purpose. That is, for all $n \geq N$,

$$
\left|x_{n}-a\right|<\delta \Longrightarrow\left|f\left(x_{n}\right)-f(a)\right|<\varepsilon \Longrightarrow f\left(x_{n}\right) \rightarrow f(a)
$$

For the converse, let us assume that f is not continuous at a. Then there exists $\varepsilon>0$ for which no $\delta>0$ will satisfy the required $(\varepsilon-\delta)$ condition. For each $\delta=\frac{1}{n}, n \in \mathbb{N}$, there exist x_{n} such that $\left|x_{n}-a\right|<\frac{1}{n}$ with $\left|f\left(x_{n}\right)-f(a)\right| \geq \varepsilon$. This implies that $x_{n} \rightarrow a$ but $f\left(x_{n}\right) \nrightarrow f(a)$. This contradicts our hypothesis. Hence f is continuous at a.

Example 5. - Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
f(x)= \begin{cases}1, & \text { if } x \in \mathbb{Q} \\ 0, & \text { otherwise }\end{cases}
$$

This is known as Dirichlet's function. This function is not continuous at any point of \mathbb{R}.

Let $a \in \mathbb{Q}$. Choose a sequence of irrational numbers $\left(x_{n}\right)$ converging to a. Then $f\left(x_{n}\right)=0 \nrightarrow f(a)=1$. Similarly, if $a \notin \mathbb{Q}$, we choose a sequence of rational numbers $\left(x_{n}\right)$ converging to a. Then $f\left(x_{n}\right)=1 \nrightarrow f(a)=0$. So, f is not continuous at any $a \in \mathbb{R}$.

- Let $f:[0, \infty) \rightarrow \mathbb{R}$ be given by
$f(x)= \begin{cases}1, & \text { if } x=0, \\ 1 / q, & \text { if } x=p / q, \text { where } p, q \in \mathbb{N} \text { and } p, q \text { have no common factors, } \\ 0, & \text { if } x \text { is irrational. }\end{cases}$
This function is known as Thomae's function. It is discontinuous at every rational in $[0, \infty]$. Let $a \in \mathbb{Q}$. Choose a sequence of irrational numbers $\left(x_{n}\right)$ converging to a. Then $f\left(x_{n}\right)=0 \nrightarrow f(a)$ as $f(a) \neq 0$. What happens at irrational numbers?

Problem 6. Let $f: \mathbb{R} \rightarrow(0, \infty)$ be a function which satisfies $f(x+y)=f(x) f(y)$ for all $x, y \in \mathbb{R}$. If f is continuous at 0 , show that f is continuous at every $a \in \mathbb{R}$.

Solution. Since $f(0)=f(0)^{2}$, we have $f(0)=1$. Moreover, $f(x-x)=f(x) f(-x) \Longrightarrow$ $f(-x)=\frac{1}{f(x)}$. Let $a \in \mathbb{R}$ and $x_{n} \rightarrow a$. It follows that $x_{n}-a \rightarrow 0$. As f is continuous at $0, f\left(x_{n}-a\right) \rightarrow f(0)=1$. But $f\left(x_{n}-a\right)=f\left(x_{n}\right) f(-a)=\frac{f\left(x_{n}\right)}{f(a)} \rightarrow 1$. This implies that $f\left(x_{n}\right) \rightarrow f(a)$ (Why?). Hence f is continuous at a.

References

[1] Judith V. Grabiner, The Origins of Cauchy's Rigorous Calculus, United States, Dover Publications, 2012.

[^0]: ${ }^{1}$ Epsilon-delta proofs are first found in the works of Cauchy. The formal $\varepsilon-\delta$ definition of continuity is attributed to Bolzano and Weierstrass. For more details see [1].

