
CONTINUITY

In the previous lectures we studied real sequences, that is, real-valued functions defined

on the subset N of R. In this lecture we will consider real-valued functions whose domains

are arbitrary subsets of R.

Continuity of Functions

We first introduce the notion of continuity and see few examples.

Definition 1 (ε − δ Definition1). Let J ⊂ R. Let f : J → R and a ∈ J . We say that

f is continuous at a if for every ε > 0, there exists a δ > 0 such that |f(x) − f(a)| < ε

whenever x ∈ J and |x− a| < δ.

If f is continuous at each a ∈ J , then we say that f is continuous on J .

Remark 2. The basic idea to show the continuity of f at a point a is to obtain an estimate

of the form

|f(x)− f(a)| ≤ Ka|x− a|,

where Ka is a constant which may depend on a. This may not work always.

Examples.

• Let f : R → R be defined by f(x) = x. We want to prove that f is continuous on

R.

To check the continuity at any point a ∈ R, we need to estimate |f(x)−f(a)| =

|x − a|. If ε > 0 is given, we wish to find a δ > 0 such that If |x − a| < δ =⇒

|f(x)− f(a)| = |x− a| < ε. This suggests that we may take δ = ε. Now, how do

you write in the exam!!??

Let a ∈ R and ε > 0. Let δ = ε. Then for any x with |x − a| < δ, we have

|f(x) − f(a)| = |x − a| < δ = ε. Thus, f is continuous at a ∈ R. Since a is

arbitrary, we conclude that f is continuous on R.

• Let f : R → R be defined by f(x) = x2. Let a ∈ R and ε > 0. We choose a

δ < min{1, ε
1+2|a|

}. For x ∈ R such that |x− a| < δ, we have |x − a| < 1 so that

1Epsilon-delta proofs are first found in the works of Cauchy. The formal ε− δ definition of continuity

is attributed to Bolzano and Weierstrass. For more details see [1].
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|x| ≤ |x− a|+ |a| < 1 + |a|. Now,

|f(x)− f(a)| = |x2 − a2| = |x+ a||x− a|

≤ (|x|+ |a|)|x− a|

≤ (1 + 2|a|)|x− a|

< (1 + 2|a|)δ < ε.

Thus, f is continuous at a and hence on R.

But now you might be wondering: how did we know in advance that such a δ

will work. For this we have to go back to Remark 2. We want an estimate of the

form |f(x)− f(a)| ≤ Ka|x− a|. So,

|f(x)− f(a)| = |x2 − a2| = |x+ a||x− a| ≤ (|x|+ |a|)|x− a|. (1)

We need to estimate |x| in terms of a. Suppose we have already found a δ that

works. This implies that |x| ≤ |x− a|+ |a| < δ + |a|. We know that if a δ works,

then any δ′ ≤ δ also works. Assume δ < 1 (If we find a δ > 1, we can choose the

minimum of this δ and 1). It follows that |x| < 1+ |a|. Equation (1) now becomes

|f(x)− f(a)| ≤ (|x|+ |a|)|x− a| ≤ (1 + 2|a|)|x− a|.

Therefore, if we make sure that (1 + 2|a|)|x− a| < ε, we get |f(x)− f(a)| < ε. In

other words, we have to ensure that |x− a| < ε
1+2|a|

. We also wanted |x| < 1+ |a|.

Thus, we need to take δ < min{1, ε
1+2|a|

}.

Exercise 3. Using ε− δ argument, prove that the following functions are continuous.

(1) For a > 0, let f : [−a, a] → R be defined as f(x) = x2.

(2) For a > 0, let f : (a,∞) → R be defined as f(x) = 1
x
.

Sequential Criterion for Continuity

We can characterize continuity of a function using the theory of sequence limits. The

next result provides a very useful criterion to check continuity of a function at a point.

Theorem 4. Let a ∈ J , and let f : J → R be a function. Then f is continuous at a if

and only if for every sequence (xn) in J with xn → a, we have f(xn) → f(a).

Proof. Suppose f is continuous at a and xn → a. Let ε > 0. Then there exists a δ > 0

such that |f(x)−f(a)| < ε whenever |x−a| < δ. Since xn → a, for this δ > 0, there exists

a positive integer N such that |xn − a| < δ for all n ≥ N . This N serves our purpose.

That is, for all n ≥ N ,

|xn − a| < δ =⇒ |f(xn)− f(a)| < ε =⇒ f(xn) → f(a).
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For the converse, let us assume that f is not continuous at a. Then there exists ε > 0 for

which no δ > 0 will satisfy the required (ε − δ) condition. For each δ = 1
n
, n ∈ N, there

exist xn such that |xn − a| < 1
n
with |f(xn) − f(a)| ≥ ε. This implies that xn → a but

f(xn) 9 f(a). This contradicts our hypothesis. Hence f is continuous at a. �

Example 5. • Let f : R → R be given by

f(x) =











1, if x ∈ Q,

0, otherwise.

This is known as Dirichlet’s function. This function is not continuous at any point

of R.

Let a ∈ Q. Choose a sequence of irrational numbers (xn) converging to a. Then

f(xn) = 0 9 f(a) = 1. Similarly, if a /∈ Q, we choose a sequence of rational

numbers (xn) converging to a. Then f(xn) = 1 9 f(a) = 0. So, f is not

continuous at any a ∈ R.

• Let f : [0,∞) → R be given by

f(x) =























1, if x = 0,

1/q, if x = p/q, where p, q ∈ N and p, q have no common factors,

0, if x is irrational.

This function is known as Thomae’s function. It is discontinuous at every rational

in [0,∞]. Let a ∈ Q. Choose a sequence of irrational numbers (xn) converging to

a. Then f(xn) = 0 9 f(a) as f(a) 6= 0. What happens at irrational numbers?

Problem 6. Let f : R → (0,∞) be a function which satisfies f(x+ y) = f(x)f(y) for all

x, y ∈ R. If f is continuous at 0, show that f is continuous at every a ∈ R.

Solution. Since f(0) = f(0)2, we have f(0) = 1. Moreover, f(x−x) = f(x)f(−x) =⇒

f(−x) = 1
f(x)

. Let a ∈ R and xn → a. It follows that xn − a → 0. As f is continuous at

0, f(xn − a) → f(0) = 1. But f(xn − a) = f(xn)f(−a) = f(xn)
f(a)

→ 1. This implies that

f(xn) → f(a) (Why?). Hence f is continuous at a.
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