CONTINUITY

In the previous lectures we studied real sequences, that is, real-valued functions defined
on the subset N of R. In this lecture we will consider real-valued functions whose domains

are arbitrary subsets of R.

Continuity of Functions

We first introduce the notion of continuity and see few examples.

Definition 1 (¢ — ¢ DeﬁnitionH). Let J CR. Let f:J — R anda € J. We say that
f is continuous at a if for every e > 0, there exists a § > 0 such that |f(z) — f(a)] < ¢
whenever x € J and |x — a| < 6.

If f is continuous at each a € J, then we say that f is continuous on J.

Remark 2. The basic idea to show the continuity of f at a point a is to obtain an estimate

of the form
[f(z) = fla)] < Kqlz —al,

where K, 1s a constant which may depend on a. This may not work always.

Examples.

e Let f: R — R be defined by f(z) = x. We want to prove that f is continuous on
R.

To check the continuity at any point a € R, we need to estimate |f(z) — f(a)| =
|x —al. If e > 0 is given, we wish to find a § > 0 such that If |z —a| < § =
|f(x) — f(a)| = |x — a] < e. This suggests that we may take 6 = . Now, how do
you write in the exam!!??

Let a € R and € > 0. Let 6 = ¢. Then for any = with |z — a| < J, we have
|f(x) — f(a)] = |v —a| < 6 = e. Thus, f is continuous at a € R. Since a is
arbitrary, we conclude that f is continuous on R.

e Let f: R — R be defined by f(z) = 2°. Let a € R and € > 0. We choose a

0 < min{l, —=£—=}. For x € R such that |z — a| < J, we have |z — a|] < 1 so that
14-2|a|

IEpsilon-delta proofs are first found in the works of Cauchy. The formal & — § definition of continuity

is attributed to Bolzano and Weierstrass. For more details see [I].
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|z| < |z —a| + |a|] <1+ |a]. Now,
(@) = f(a)] = |2* — a®| = |z + a||lz —
< (lz[ +[a])|z — al
< (14 2|a|)|z — a
< (1+42]a])d < e.

Thus, f is continuous at a and hence on R.
But now you might be wondering: how did we know in advance that such a 4

will work. For this we have to go back to Remark 2. We want an estimate of the

form | f(z) — f(a)| < K,|z — al. So,
|[f(z) = f(a)| = |2* — @®| = |z + allz — a] < (|2] + |a])|z —al. (1)

We need to estimate |z| in terms of a. Suppose we have already found a ¢ that
works. This implies that |z| < | — a| + |a| < § + |a|. We know that if a § works,
then any ¢’ < § also works. Assume 0 < 1 (If we find a 6 > 1, we can choose the
minimum of this ¢ and 1). It follows that |z| < 1+ |a|. Equation (Il) now becomes

[f(x) = fa)| < (lz] + |al)|z — a] < (1 + 2]a])|z - af

Therefore, if we make sure that (1 + 2|a|)|x —a| < e, we get |f(z) — f(a)] <e. In

other words, we have to ensure that |z —a| < o). We also wanted |z| < 1+ |al.

Thus, we need to take § < min{1, o] }.

Exercise 3. Using € — § argument, prove that the following functions are continuous.
(1) Fora >0, let f :[—a,a] — R be defined as f(x) = x?.
(2) Fora >0, let f: (a,00) — R be defined as f(x) = 1.

Sequential Criterion for Continuity

We can characterize continuity of a function using the theory of sequence limits. The

next result provides a very useful criterion to check continuity of a function at a point.

Theorem 4. Let a € J, and let f: J — R be a function. Then f is continuous at a if

and only if for every sequence (x,) in J with x, — a, we have f(x,) — f(a).

Proof. Suppose f is continuous at a and x,, — a. Let ¢ > 0. Then there exists a § > 0
such that |f(z)— f(a)| < € whenever |z —a| < 0. Since x,, — a, for this 6 > 0, there exists
a positive integer N such that |z, —a| < ¢ for all n > N. This N serves our purpose.

That is, for all n > N,

20 —al <6 = [f(zn) — fla)] <& = f(zn) = f(a).
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For the converse, let us assume that f is not continuous at a. Then there exists € > 0 for

which no § > 0 will satisfy the required (¢ — §) condition. For each § = 2, n € N, there

n’

exist @, such that |z, —a| < L with |f(z,) — f(a)| > e. This implies that z,, — a but

f(z,) - f(a). This contradicts our hypothesis. Hence f is continuous at a. O
Example 5. o Let f: R — R be given by
1, ifzeqQ,
fx) =

0, otherwise.

This is known as Dirichlet’s function. This function is not continuous at any point
of R.

Let a € Q. Choose a sequence of irrational numbers (x,) converging to a. Then
f(zn) =0 - f(a) = 1. Similarly, if a ¢ Q, we choose a sequence of rational
numbers (x,) converging to a. Then f(z,) = 1 - f(a) = 0. So, f is not
continuous at any a € R.

e Let f:[0,00) — R be given by

1, if £ =0,

f(z) = 1/q, ifx=p/q, where p,q € N and p,q have no common factors,
0, if © is irrational.
This function is known as Thomae’s function. It is discontinuous at every rational

in [0,00]. Let a € Q. Choose a sequence of irrational numbers (z,,) converging to

a. Then f(x,) =0 -» f(a) as f(a) # 0. What happens at irrational numbers?

Problem 6. Let f : R — (0,00) be a function which satisfies f(x+y) = f(x)f(y) for all

x,y € R. If f is continuous at 0, show that f is continuous at every a € R.

Solution. Since f(0) = £(0)?, we have f(0) = 1. Moreover, f(z—x) = f(z)f(—z) =
f(=z) = ﬁ Let a € R and x,, — a. It follows that z,, —a — 0. As f is continuous at
0, flzn —a) = f(0) = 1. But f(zn —a) = f(z,)f(—a) = L% — 1. This implies that

fla)
f(z,) = f(a) (Why?). Hence f is continuous at a.
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