
SEQUENCES AND THEIR CONVERGENCE

Definitions and Examples

We start with the definition of a sequence.

Definition 1. Let X be nonempty set. A sequence in X is a function f : N → X. We let

xn = f(n) and call xn the n-th term of the sequence. Generally we denote f by (xn) or as an

infinite tuple (x1, x2, . . . , xn, . . .). A sequence in R is called a real sequence. Likewise, a sequence

in C is called a complex sequence.

Throughout this course, unless stated otherwise, (xn) will always denote a real sequence.

Examples. Some examples of sequences:

(1) Fix c ∈ R and define xn = c for all n. The sequence (c, c, c, . . .) is called a constant

sequence.

(2) (n) = (1, 2, 3, . . .).

(3)
(

1
n

)

=
(

1, 12 ,
1
3 , . . .

)

.

(4) ((−1)n) = (−1, 1,−1, 1, . . .).

(5) Let x1 = x2 = 1 and define xn = xn−1 + xn−2 for all n > 2. The sequence is

(1, 1, 2, 3, 5, 8, 13, . . .). This sequence is called Fibonacci sequence1.

The sequence

1,
1

2
,
1

3
,
1

4
,
1

5
, · · ·

getting closer and closer to the number 0. We say that this sequence converges to 0 or that the

limit of the sequence is the number 0. How should this idea be properly defined? The definition

which we learned in school was something like this

A sequence xn converges to a number ℓ if the terms of the sequence get closer and closer to ℓ.

The above definition is not precise. It is too vague, and sometimes misleading. What about

the sequence

0.1, 0.01, 0.02, 0.001, 0.002, 0.0001, 0.0002, . . .?

This sequence should converge to 0 but the terms do not get steadily “closer and closer” but

back off a bit at each second step. Also, the sequence

0.1, 0.11, 0.111, 0.1111, 0.1111, . . .

is getting “closer and closer” to 0.2, but the sequence does not converge to 0.2. A smaller number

(19 , which it is also getting closer and closer to) is the correct limit.

1Also known as Fibonacci numbers. They appear in nature surprisingly often, for example, numbers of petals

on a flower, number of spirals on a sunflower or a pineapple are typically Fibonacci numbers. The ratios of

successive terms of the Fibonacci sequence tends to an irrational number called the golden ratio. The golden ratio

appears in some patterns in nature, including the spiral arrangement of leaves.
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Definition 2 (Limit of a Sequence). Let (xn) be a real sequence. We say that (xn) converges if

there exists a real number ℓ such that for every ε > 0, there exists N ∈ N such that

|xn − ℓ| < ε for all n ≥ N.

In this case, (xn) converges to ℓ. The number ℓ is called a limit of the sequence (xn). We write

xn → ℓ as n → ∞ or limn→∞ xn = ℓ. A sequence that is not convergent is said to be divergent.

The definition of convergence of (xn) can be written in terms of quantifiers as follows:

“∃ ℓ ∈ R (∀ ε > 0 (∃ N ∈ N (∀ n ≥ N (|xn − ℓ| < ε))))”.

Exercise 3. What does it mean to say that a sequence (xn) does not converge? Write it in

words and then in terms of quantifiers.

Examples. (Convergent sequences)

(1) If xn = c for all n, then xn → c. In fact, given ε > 0, we may take N = 1, so |xn− c| = 0

for all n ≥ 1 = N .

(2) If xn = 1
n for n ∈ N, then it is easy to see that the sequence should have limit ℓ = 0.

We claim that xn → 0. To see this, given any ε > 0, |xn − ℓ| = | 1n − 0| = 1
n . We want to

choose an N such that for all n ≥ N , |xn − ℓ| < ε, i.e., 1
n < ε or n > 1

ε . Such an n exists

by the Archimedean property (How?).

Thus, choose an integer N such that N > 1
ε by the Archimedean property. Then for

all n ≥ N , we have

|xn − ℓ| = | 1
n
− 0| = 1

n
≤ 1

N
< ε.

Hence, 1
n → 0.

(3) Consider xn = 1
2n . If we look at the terms of the sequence, we can see that this sequence

should converge to 0.

Let ε > 0. We have to find N ∈ N such that for all n ≥ N

|xn − ℓ| = | 1
2n

− 0| = 1

2n
< ε.

Note that for all n ∈ N, 2n > n (Prove by induction!). Hence, 1
2n < 1

n for all n ∈ N.

Choose an integer N such that N > 1
ε by the AP, then for all n ≥ N , we have

|xn − ℓ| = | 1
2n

− 0| = 1

2n
<

1

n
< ε.

Remark 4. (1) If |xn − ℓ| < ε for all n ≥ N , then any N1 > N will also work. Thus, N is

not unique.

(2) From the the above examples we must have observed that the natural number N de-

pends on the given ε > 0 while checking for convergence. That is why when we want to

emphasize this, we sometime denote N by N(ε).

Examples. (Divergent sequences)
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(1) If xn = n for n ∈ N, then it is not difficult to see intuitively that this (xn) diverges. On

the contrary, let xn → ℓ. For ε = 1, ∃ N ∈ N such that |xn − ℓ| < 1 for all n ≥ N . In

particular, for n ≥ N , xn = n ∈ (ℓ− 1, ℓ+ 1). This implies that n < ℓ+ 1 for all n ∈ N,

and hence N is bounded above. This is a contradiction. Therefore, (xn) is divergent.

(2) If xn = (−1)n for n ∈ N, then (xn) is divergent. Suppose xn → ℓ. Choose ε > 0 such

that ε < 1. Then there exists N ∈ N such that xn ∈ (ℓ − ε, ℓ + ε) for all n ≥ N . In

particular, −1, 1 ∈ (ℓ− ε, ℓ+ ε) (x2N = 1, x2N+1 = −1). Since, 1 < ℓ+ ε and −1 > ℓ− ε,

we have

2 < ℓ+ ε− (ℓ− ε) = 2ε.

That is, 1 < ε. This is a contradiction. Since ℓ is arbitrary, (xn) is divergent.

Proposition 5 (Uniqueness of limit). A convergent sequence has a unique limit.

Proof. Exercise. �

Definition 6 (Bounded Sequence). A sequence(xn) is said to be bounded if there exists C > 0

such that |xn| ≤ C for all n ∈ N.

In Example 2, the sequences in items (1), (3) and (4) are bounded. The sequences in items

(2) and (5) are unbounded.

Theorem 7 (Necessary condition for convergence). A convergent sequence is bounded.

Proof. Let xn → ℓ and ε = 1. There exists N ∈ N such that, for n ≥ N , we have |xn − ℓ| < 1.

This implies that

|xn| ≤ |xn − ℓ|+ |ℓ| < 1 + |ℓ|, for n ≥ N.

If C = max{|x1|, |x2|, . . . , |xN−1|, 1 + |ℓ|}, then |xn| ≤ C, and hence, (xn) is bounded. �

Is the converse of the above proposition true? Consider the sequence ((−1)n). It is bounded

but not convergent.

Limit Theorems

In general, verifying the convergence directly from the definition is a difficult task. In this

section, we will study few results which will enable us to find limits of many sequences, and some

sufficient conditions for the convergence of a sequence. Given two sequences (xn) and (yn), the

product sequence, denoted by (xnyn), is a new sequence (tn) such that tn = xnyn.

Theorem 8 (Algebra of Convergent Sequences). Let xn → x, yn → y and α ∈ R. Then

(1) xn + yn → x+ y.

(2) αxn → αx.

(3) xnyn → xy.

(4) If x 6= 0 and xn 6= 0 for all n, then 1
xn

→ 1
x .

The following theorem is immediate now.
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Theorem 9. The set c of all convergent sequences of real numbers is a vector space over R.

Moreover, The map T : c → R defined by

T ((xn)) = lim
n→∞

xn

is a linear transformation.

Example 10. Let xn = 1
12+1 + 1

22+2 + · · ·+ 1
n2+n . As 1

n2+n = 1
n − 1

n+1 , we have

xn = 1− 1

2
+

1

2
− 1

3
+ · · · + 1

n
− 1

n+ 1
→ 1.

An easy and a very useful result is the following

Theorem 11 (Sandwich Theorem). Let (xn), (yn) and (zn) be sequences such that xn → α,

yn → α and xn ≤ yn ≤ zn for all n. Then zn → α.

Proof. Let ε > 0 be given. Since xn → α and yn → α, there exist N1 and N2 such that

xn ∈ (α− ε, α+ ε) for all n ≥ N1, and yn ∈ (α− ε, α+ ε) for all n ≥ N2.

If we let N = max{N1, N2}, then for n ≥ N , we have

α− ε < xn ≤ zn and zn ≤ yn < α+ ε.

That is, zn ∈ (α− ε, α+ ε) for all n ≥ N . It follows that zn → α. �

Examples.

• Let x ∈ R. For each n ∈ N, choose any element xn such that x − 1
n < xn < x + 1

n)

(Why such xn exists!). It follows from the algebra of convergent sequences and sandwich

theorem that xn → x.

• We have sinn
n → 0, as − 1

n ≤ sinn
n ≤ 1

n .

• Let xn = 1
n2+1

+ 2
n2+2

+ · · ·+ n
n2+n

. Try to write down x1, x2 and x3.

Since 1
n2+n

≤ 1
n2+k

≤ 1
n2+1

, k = 1, 2, . . . n, we have

(1 + 2 + · · · + n)
1

n2 + n
≤ xn ≤ (1 + 2 + · · ·+ n)

1

n2 + 1
⇒ xn → 1

2
.

Some Important Limits

In this section, we will study some of the most often used sequences and their convergence.

Theorem 12. (1) Let 0 ≤ r < 1. Then rn → 0.

(2) Let |r| < 1. Then rn → 0.

(3) Let |r| < 1. Then nrn → 0.

(4) Let a > 0. Then a1/n → 1.

(5) n1/n → 1.

(6) Fix a ∈ R. Then an

n! → 0.
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Proof. (1) If r = 0, the result is obvious. If 0 < r < 1, then r = 1
h for some h > 0. Using

binomial theorem, we have

(1 + h)n = 1 + nh+
n(n− 1)

2
h2 + · · ·+ hn > nh,

since all terms are positive. This implies that 0 < rn < 1
nh for all n. By Sandwich

theorem, rn → 0.

(2) Use part (1) and the fact that a sequence xn → 0 ⇐⇒ |xn| → 0.

(3) It is enough to prove the result for 0 < r < 1. Proceeding as in part (1),

(1 + h)n = 1 + nh+
n(n− 1)

2
h2 + · · ·+ hn >

n(n− 1)

2
h2,

since all terms are positive. Thus, 0 < nrn < 2
h2(n−1)

for all n ≥ 2, and hence by

Sandwich theorem, nrn → 0.

(4) If a > 1, write a1/n = 1 + hn, hn > 0. This implies a = (1 + hn)
n > nhn, and hence

0 < hn < a
n . This means hn → 0. Therefore, a1/n → 1 as desired.

If 0 < a < 1, take b = 1
a > 1.

(5) Assertions (5) and (6) are exercises.

�

Theorem 13. Let xn → x. Let (sn) be the sequence of arithmetic means defined by

sn =
x1 + x2 + · · ·+ xn

n
.

Then sn → x.

Definition 14 (Sequences Diverging to ±∞). Let (xn) be a sequence.

• We say that (xn) diverges to +∞ (or simply ∞), and write limn→∞ xn = ∞ or xn → ∞
as n → ∞,

if for any r ∈ R, there exists N ∈ N such that xn > r whenever n ≥ N .

• Likewise, (xn) diverges to −∞, and write limn→∞ xn = −∞ or xn → −∞ as n → ∞,

if for any s ∈ R, there exists N ∈ N such that xn < r whenever n ≥ N .

Examples.

• Let xn = n and yn = 2n. Then both xn → ∞ and yn → ∞. (Prove!)

• Let x2n−1 = 1 and x2n = 2n. This sequence is unbounded, and hence it is divergent

(why!). However, it does not diverge to ∞. Try to write this in terms of quantifiers.

If r = 2, then given any N ∈ N, 2N − 1 ≥ N and x2N−1 < r. Thus, xn 9 ∞.

• (n!)1/n diverges to ∞. To see this, let r > 0 be given. Since rn

n! → 0, for ε = 1, there

exists N ∈ N such that rn

n! < 1 whenever n ≥ N . That is, rn < n! or (n!)1/n > r for

n ≥ N . Therefore, (n!)1/n → ∞.

The following result, called ratio test for sequences, is very useful.

Theorem 15 (Ratio Test). Let (xn) be a sequence such that xn > 0 for all n. Let limn→∞

xn+1

xn

=

λ. Then
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(1) If λ < 1, then limn→∞ xn = 0.

(2) If λ > 1, then limn→∞ xn = ∞.

Examples.

• Let xn = an

n! , where a ∈ R. Then xn+1

xn

= a
n+1 → 0. It follows that xn → 0.

• Let xn = an

n , where a > 1. Then xn+1

xn

= a. It follows that xn → ∞.

• If λ = 1 in the previous theorem, the sequence (xn) may converge or diverge. For

example, xn = 1
n and xn = n.

Monotone Sequences

In this section we present a sufficient condition for the convergence of a sequence.

Definition 16. We say that a sequence (xn) is increasing (strictly increasing) if xn ≤ xn+1

(xn < xn+1) for all n, and decreasing (strictly decreasing) if xn ≥ xn+1 (xn > xn+1) for all n.

A sequence (xn) is said to be monotone if it is either increasing or decreasing.

Note that any increasing sequence is bounded below by x1, and a decreasing sequence is

bounded above by x1. Therefore, an increasing (decreasing) sequence is bounded if and only if

it is bounded above (below).

Theorem 17 (Sufficient condition for convergence). (1) If a sequence (xn) is increasing and

bounded above, then it is convergent and

lim
n→∞

xn = sup{xn : n ∈ N}.

(2) If a sequence (xn) is decreasing and bounded below, then it is convergent and

lim
n→∞

xn = inf{xn : n ∈ N}.

Example. Let a > 0 and x1 > 0. Define xn+1 = 1
2(xn + a

xn

) for all n ∈ N. We show that this

sequence is bounded below and decreasing, hence convergent.

By AM-GM inequality,

xn+1 =
xn + a

xn

2
≥

√
a. Further, xn+1 − xn =

1

2

(

a− x2n
xn

)

≤ 0.

Therefore, the sequence (xn) is bounded below and decreasing. Can we find the limit?

Let xn → ℓ. By the algebra of converging sequences, ℓ = 1
2(ℓ +

a
ℓ ) or ℓ2 = a. This means

ℓ =
√
a.

Problem 18. Let (xn) be bounded. Assume that xn+1 ≥ xn−2−n. Show that (xn) is convergent.

Solution. Since (xn) be bounded, it is enough to show that sequence it is monotone. Let

yn = xn − 1
2n−1 . It is clear that (yn) is bounded (How!). Moreover,

yn+1 − yn = xn+1 −
1

2n
− xn +

1

2n−1
≥ 0.

Hence, (yn) is increasing. As (yn) is bounded, it is convergent. This implies that (xn) is

convergent.
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