
TRIPLE INTEGRALS; CHANGE OF VARIABLES IN TRIPLE
INTEGRALS

In this lecture we shall extend the considerations of the last two lectures to functions

defined on subsets of R3 (or more generally to bounded subsets of Rn, where n ≥ 3) and

functions defined them in a straightforward manner.

1. Triple Integrals

Let Q = [a, b]× [c, d]× [e, f ] be a cuboid in R3. Every partition P of Q is of the form

P = P1×P2×P3 where P1, P2 and P3 are partitions of [a, b], [b, c] and [e, f ] respectively. For

a given partition P and a bounded function f defined on Q, we can define L(P, f), U(P, f),

lower integral, upper integral and integral of f as we defined in the double integral case.

If a function f on Q is integrable then the integral, called triple integral, is denoted by∫∫∫
Q

f(x, y, z)dxdydz or

∫∫∫
Q

dV.

As we did in the double integral case, the definition of triple integral can be extended to

any bounded regions in R3. One can also prove that every continuous function on Q is

integrable.

Remark 1. In the double integral case, the integral of positive function f is the volume

of the region below the surface z = f(x, y). In the triple integral case we do not have

any such geometric interpretation, except the fact that
∫∫∫

D
dxdydz is considered to be

the volume of the region D.

Let us now consider Fubini’s Theorem for a function defined on bounded subsets of R3.

Theorem 2 (Fubini’s Theorem). Let D be a bounded subset of R3 and let f : D → R3

an integrable function. Suppose D = {(x, y, z) ∈ R3 : (x, y) ∈ R, f1(x, y) ≤ z ≤ f2(x, y)},

where f1, f2 : R → R are integrable functions such that f1 ≤ f2, and for each fixed

(x, y) ∈ R, the integral
f2(x,y)∫
f1(x,y)

f(x, y, z)dz exists, then

∫∫∫
D

f(x, y, z)dxdydz =

∫∫
R

(∫ f2(x,y)

f1(x,y)

f(x, y, z)dz

)
dxdy

In the above theorem, the region D is bounded below by the surface z = f1(x, y) and

bounded above by the surface z = f1(x, y), and on the side by the cylinder generated by
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a line moving parallel to the z-axis along the boundary of R. The projection of D on the

xy-plane is the region R.

Example. Let D = {(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 1}, and f : D → R is a continuous

function, then

∫∫∫
D

f(x, y, z)dxdydz =

1∫
−1



√
1−x2∫

−
√
1−x2

√
1−x2−y2∫

−
√

1−x2−y2

f(x, y, z)dz

 dy

 dx.
2. Change of Variables in Triple Integrals

The change of variable formula for a double integral can be extended to triple integrals.

We will straightaway present the formula.

Formula.∫∫∫
D

f(x, y, z)dxdydz =

∫∫∫
E

f [X(u, v, w), Y (u, v, w), Z(u, v, w)]|J(u, v, w)|dudvdw,

where the Jacobian determinant J(u, v, w) is defined as follows:

J(u, v, w) =

∣∣∣∣∣∣∣∣∣
∂X
∂u

∂Y
∂u

∂Z
∂u

∂X
∂v

∂Y
∂v

∂Z
∂v

∂X
∂w

∂Y
∂w

∂Z
∂w

∣∣∣∣∣∣∣∣∣ .
The above formula is valid under the same assumptions we had for the two dimensional

case.

3. Triple Integrals in Cylindrical Coordinates

Definition 3. Cylindrical coordinates represent a point P in space by ordered triples

(r, θ, z) in which r > 0 and θ ∈ [0, 2π), and

(1) r and θ are polar coordinates for the vertical projection of P on the xy-plane,

(2) z is the rectangular vertical coordinate.
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The variables x, y and z are changed to r, θ and z by the following three equations

x = X(r, θ) = r cos θ, y = Y (r, θ) = r sin θ and z = z.

The Jacobian is

J(u, v, z) =

∣∣∣∣∣∣∣∣∣
cos θ sin θ 0

−r sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣∣∣∣ = r(cos2 θ + sin2 θ) = r.

Therefore, the change of variable formula is∫∫∫
D

f(x, y, z)dxdydz =

∫∫∫
E

f(r cos θ, r sin θ, z)rdrdθdz.

Example. Let us evaluate
∫∫∫

D
(z2x2 + z2y2)dxdydz, where D is the region determined

by x2 + y2 ≤ 1,−1 ≤ z ≤ 1.

We can describe D in cylindrical coordinates by 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π,−1 ≤ z ≤ 1.

Thus, ∫∫∫
D

(z2x2 + z2y2)dxdydz =

∫ 1

−1

∫ 2π

0

∫ 1

0

(z2r2)rdrdθdz

=

∫ 1

−1

∫ 2π

0

z2
r4

4

∣∣∣∣1
r=0

dθdz

=

∫ 1

−1

2π

4
z2dz =

π

3
.

4. Triple Integrals in Spherical Coordinates

Definition 4. Spherical coordinates represent a point P in space by ordered triples (ρ, φ, θ)

in which

(1) ρ is the distance from P to the origin (ρ ≥ 0),

(2) φ is the angle OP makes with the positive z-axis (0 ≤ φ ≤ π),

(3) θ is the angle from cylindrical coordinates.



4 TRIPLE INTEGRALS; CHANGE OF VARIABLES IN TRIPLE INTEGRALS

Equations Relating Spherical Coordinates to Cartesian Coordinates.

r = ρ sinφ, x = r cos θ = ρ sinφ cos θ,

z = ρ cosφ, y = r sin θ = ρ sinφ sin θ.

We keep ρ > 0, 0 ≤ θ < 2π and 0 ≤ φ < π to get a one-one mapping. The Jacobian

determinant is J(ρ, φ, θ) = −ρ2 sinφ. Since sinφ ≥ 0, we have |J(ρ, φ, θ)| = ρ2 sinφ and

the change of variable formula is∫∫∫
D

f(x, y, z)dxdydz =

∫∫∫
E

f(ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ)ρ2 sinφdρdθdπ.

Example. Let D = {(x, y, z) : x2 + y2 + z2 ≤ 4a2, z ≥ a}. Evaluate
∫∫∫

D
z

(x2+y2+z2)
3
2
dV

using spherical coordinates.

If we allow φ to vary independently, then φ varies from 0 to π
3

(see Figure 2). If we fix

φ and allow θ to vary from 0 to 2π, then we obtain a surface of a cone (see Figure 1).

Since only a part of the cone is lying in the given region, for a fixed φ and θ, ρ varies from

a secφ to 2a (see Figure 1). Therefore, the integral is∫ π
3

0

∫ 2π

0

∫ 2a

a secφ

cosφ

ρ2
|J(ρ, θ, φ)|dρdθdφ = 2π

∫ π
3

0

(2a sinφ cosφ− a sinφ)dφ =
πa

2
.
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