TRIPLE INTEGRALS; CHANGE OF VARIABLES IN TRIPLE INTEGRALS

In this lecture we shall extend the considerations of the last two lectures to functions defined on subsets of \mathbb{R}^3 (or more generally to bounded subsets of \mathbb{R}^n , where $n \geq 3$) and functions defined them in a straightforward manner.

1. TRIPLE INTEGRALS

Let $Q = [a, b] \times [c, d] \times [e, f]$ be a cuboid in \mathbb{R}^3 . Every partition P of Q is of the form $P = P_1 \times P_2 \times P_3$ where P_1, P_2 and P_3 are partitions of [a, b], [b, c] and [e, f] respectively. For a given partition P and a bounded function f defined on Q, we can define L(P, f), U(P, f), lower integral, upper integral and integral of f as we defined in the double integral case. If a function f on Q is integrable then the integral, called triple integral, is denoted by

$$\iiint_Q f(x, y, z) dx dy dz \text{ or } \iiint_Q dV.$$

As we did in the double integral case, the definition of triple integral can be extended to any bounded regions in \mathbb{R}^3 . One can also prove that every continuous function on Q is integrable.

Remark 1. In the double integral case, the integral of positive function f is the volume of the region below the surface z = f(x, y). In the triple integral case we do not have any such geometric interpretation, except the fact that $\iiint_D dxdydz$ is considered to be the volume of the region D.

Let us now consider Fubini's Theorem for a function defined on bounded subsets of \mathbb{R}^3 .

Theorem 2 (Fubini's Theorem). Let D be a bounded subset of \mathbb{R}^3 and let $f: D \to \mathbb{R}^3$ an integrable function. Suppose $D = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in R, f_1(x, y) \le z \le f_2(x, y)\},$ where $f_1, f_2: R \to \mathbb{R}$ are integrable functions such that $f_1 \le f_2$, and for each fixed $(x, y) \in R$, the integral $\int_{f_1(x,y)}^{f_2(x,y)} f(x, y, z) dz$ exists, then

$$\iiint_D f(x, y, z) dx dy dz = \iint_R \left(\int_{f_1(x, y)}^{f_2(x, y)} f(x, y, z) dz \right) dx dy$$

In the above theorem, the region D is bounded below by the surface $z = f_1(x, y)$ and bounded above by the surface $z = f_1(x, y)$, and on the side by the cylinder generated by TRIPLE INTEGRALS; CHANGE OF VARIABLES IN TRIPLE INTEGRALS

a line moving parallel to the z-axis along the boundary of R. The projection of D on the xy-plane is the region R.

Example. Let $D = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \leq 1\}$, and $f : D \to \mathbb{R}$ is a continuous function, then

$$\iiint_{D} f(x,y,z) dx dy dz = \int_{-1}^{1} \left[\left(\int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{-\sqrt{1-x^{2}-y^{2}}}^{\sqrt{1-x^{2}-y^{2}}} f(x,y,z) dz \right) dy \right] dx$$

2. Change of Variables in Triple Integrals

The change of variable formula for a double integral can be extended to triple integrals. We will straightaway present the formula.

Formula.

$$\iiint_D f(x, y, z) dx dy dz = \iiint_E f[X(u, v, w), Y(u, v, w), Z(u, v, w)] |J(u, v, w)| du dv dw,$$

where the Jacobian determinant J(u, v, w) is defined as follows:

$$J(u, v, w) = \begin{vmatrix} \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & \frac{\partial Z}{\partial u} \\ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & \frac{\partial Z}{\partial v} \\ \frac{\partial X}{\partial w} & \frac{\partial Y}{\partial w} & \frac{\partial Z}{\partial w} \end{vmatrix}.$$

The above formula is valid under the same assumptions we had for the two dimensional case.

3. TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES

Definition 3. Cylindrical coordinates represent a point P in space by ordered triples (r, θ, z) in which r > 0 and $\theta \in [0, 2\pi)$, and

- (1) r and θ are polar coordinates for the vertical projection of P on the xy-plane,
- (2) z is the rectangular vertical coordinate.

The variables x, y and z are changed to r, θ and z by the following three equations

$$x = X(r, \theta) = r \cos \theta, y = Y(r, \theta) = r \sin \theta$$
 and $z = z$.

The Jacobian is

$$J(u, v, z) = \begin{vmatrix} \cos\theta & \sin\theta & 0\\ -r\sin\theta & r\cos\theta & 0\\ 0 & 0 & 1 \end{vmatrix} = r(\cos^2\theta + \sin^2\theta) = r.$$

Therefore, the change of variable formula is

$$\iiint_D f(x, y, z) dx dy dz = \iiint_E f(r \cos \theta, r \sin \theta, z) r dr d\theta dz$$

Example. Let us evaluate $\iiint_D (z^2x^2 + z^2y^2) dx dy dz$, where D is the region determined by $x^2 + y^2 \le 1, -1 \le z \le 1$.

We can describe D in cylindrical coordinates by $0 \le r \le 1, 0 \le \theta \le 2\pi, -1 \le z \le 1$. Thus,

$$\iiint_{D} (z^{2}x^{2} + z^{2}y^{2})dxdydz = \int_{-1}^{1} \int_{0}^{2\pi} \int_{0}^{1} (z^{2}r^{2})rdrd\theta dz$$
$$= \int_{-1}^{1} \int_{0}^{2\pi} z^{2} \frac{r^{4}}{4} \Big|_{r=0}^{1} d\theta dz$$
$$= \int_{-1}^{1} \frac{2\pi}{4} z^{2} dz = \frac{\pi}{3}.$$

4. TRIPLE INTEGRALS IN SPHERICAL COORDINATES

Definition 4. Spherical coordinates represent a point P in space by ordered triples (ρ, ϕ, θ) in which

- (1) ρ is the distance from P to the origin ($\rho \geq 0$),
- (2) ϕ is the angle OP makes with the positive z-axis ($0 \le \phi \le \pi$),
- (3) θ is the angle from cylindrical coordinates.

Equations Relating Spherical Coordinates to Cartesian Coordinates.

$$r = \rho \sin \phi, \ x = r \cos \theta = \rho \sin \phi \cos \theta,$$
$$z = \rho \cos \phi, \ y = r \sin \theta = \rho \sin \phi \sin \theta.$$

We keep $\rho > 0, 0 \le \theta < 2\pi$ and $0 \le \phi < \pi$ to get a one-one mapping. The Jacobian determinant is $J(\rho, \phi, \theta) = -\rho^2 \sin \phi$. Since $\sin \phi \ge 0$, we have $|J(\rho, \phi, \theta)| = \rho^2 \sin \phi$ and the change of variable formula is

$$\iiint_{D} f(x, y, z) dx dy dz = \iiint_{E} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d\rho d\theta d\pi.$$

Example. Let $D = \{(x, y, z) : x^{2} + y^{2} + z^{2} \le 4a^{2}, z \ge a\}$. Evaluate $\iiint_{D} \frac{z}{(x^{2} + y^{2} + z^{2})^{\frac{3}{2}}} dV$ using spherical coordinates.

If we allow ϕ to vary independently, then ϕ varies from 0 to $\frac{\pi}{3}$ (see Figure 2). If we fix ϕ and allow θ to vary from 0 to 2π , then we obtain a surface of a cone (see Figure 1). Since only a part of the cone is lying in the given region, for a fixed ϕ and θ , ρ varies from $a \sec \phi$ to 2a (see Figure 1). Therefore, the integral is

$$\int_{0}^{\frac{\pi}{3}} \int_{0}^{2\pi} \int_{a \sec \phi}^{2a} \frac{\cos \phi}{\rho^{2}} |J(\rho, \theta, \phi)| d\rho d\theta d\phi = 2\pi \int_{0}^{\frac{\pi}{3}} (2a \sin \phi \cos \phi - a \sin \phi) d\phi = \frac{\pi a}{2}.$$

