TRIPLE INTEGRALS; CHANGE OF VARIABLES IN TRIPLE INTEGRALS

In this lecture we shall extend the considerations of the last two lectures to functions defined on subsets of \mathbb{R}^{3} (or more generally to bounded subsets of \mathbb{R}^{n}, where $n \geq 3$) and functions defined them in a straightforward manner.

1. Triple Integrals

Let $Q=[a, b] \times[c, d] \times[e, f]$ be a cuboid in \mathbb{R}^{3}. Every partition P of Q is of the form $P=P_{1} \times P_{2} \times P_{3}$ where P_{1}, P_{2} and P_{3} are partitions of $[a, b],[b, c]$ and $[e, f]$ respectively. For a given partition P and a bounded function f defined on Q, we can define $L(P, f), U(P, f)$, lower integral, upper integral and integral of f as we defined in the double integral case. If a function f on Q is integrable then the integral, called triple integral, is denoted by

$$
\iiint_{Q} f(x, y, z) d x d y d z \text { or } \iiint_{Q} d V .
$$

As we did in the double integral case, the definition of triple integral can be extended to any bounded regions in \mathbb{R}^{3}. One can also prove that every continuous function on Q is integrable.

Remark 1. In the double integral case, the integral of positive function f is the volume of the region below the surface $z=f(x, y)$. In the triple integral case we do not have any such geometric interpretation, except the fact that $\iiint_{D} d x d y d z$ is considered to be the volume of the region D.

Let us now consider Fubini's Theorem for a function defined on bounded subsets of \mathbb{R}^{3}.

Theorem 2 (Fubini's Theorem). Let D be a bounded subset of \mathbb{R}^{3} and let $f: D \rightarrow \mathbb{R}^{3}$ an integrable function. Suppose $D=\left\{(x, y, z) \in \mathbb{R}^{3}:(x, y) \in R, f_{1}(x, y) \leq z \leq f_{2}(x, y)\right\}$, where $f_{1}, f_{2}: R \rightarrow \mathbb{R}$ are integrable functions such that $f_{1} \leq f_{2}$, and for each fixed $(x, y) \in R$, the integral $\int_{f_{1}(x, y)}^{f_{2}(x, y)} f(x, y, z) d z$ exists, then

$$
\iiint_{D} f(x, y, z) d x d y d z=\iint_{R}\left(\int_{f_{1}(x, y)}^{f_{2}(x, y)} f(x, y, z) d z\right) d x d y
$$

In the above theorem, the region D is bounded below by the surface $z=f_{1}(x, y)$ and bounded above by the surface $z=f_{1}(x, y)$, and on the side by the cylinder generated by
a line moving parallel to the z-axis along the boundary of R. The projection of D on the $x y$-plane is the region R.

Example. Let $D=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2} \leq 1\right\}$, and $f: D \rightarrow \mathbb{R}$ is a continuous function, then

$$
\iiint_{D} f(x, y, z) d x d y d z=\int_{-1}^{1}\left[\left(\int_{-\sqrt{1-x^{2}}}^{-\sqrt{1-x^{2}-y^{2}}} \int_{\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}-y^{2}}} f(x, y, z) d z\right) d y\right] d x
$$

2. Change of Variables in Triple Integrals

The change of variable formula for a double integral can be extended to triple integrals. We will straightaway present the formula.

Formula.

$$
\iiint_{D} f(x, y, z) d x d y d z=\iiint_{E} f[X(u, v, w), Y(u, v, w), Z(u, v, w)]|J(u, v, w)| d u d v d w
$$

where the Jacobian determinant $J(u, v, w)$ is defined as follows:

$$
J(u, v, w)=\left|\begin{array}{lll}
\frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & \frac{\partial Z}{\partial u} \\
\frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & \frac{\partial Z}{\partial v} \\
\frac{\partial X}{\partial w} & \frac{\partial Y}{\partial w} & \frac{\partial Z}{\partial w}
\end{array}\right| .
$$

The above formula is valid under the same assumptions we had for the two dimensional case.

3. Triple Integrals in Cylindrical Coordinates

Definition 3. Cylindrical coordinates represent a point P in space by ordered triples (r, θ, z) in which $r>0$ and $\theta \in[0,2 \pi)$, and
(1) r and θ are polar coordinates for the vertical projection of P on the $x y$-plane,
(2) z is the rectangular vertical coordinate.

The variables x, y and z are changed to r, θ and z by the following three equations

$$
x=X(r, \theta)=r \cos \theta, y=Y(r, \theta)=r \sin \theta \text { and } z=z
$$

The Jacobian is

$$
J(u, v, z)=\left|\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-r \sin \theta & r \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right|=r\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=r
$$

Therefore, the change of variable formula is

$$
\iiint_{D} f(x, y, z) d x d y d z=\iiint_{E} f(r \cos \theta, r \sin \theta, z) r d r d \theta d z
$$

Example. Let us evaluate $\iiint_{D}\left(z^{2} x^{2}+z^{2} y^{2}\right) d x d y d z$, where D is the region determined by $x^{2}+y^{2} \leq 1,-1 \leq z \leq 1$.

We can describe D in cylindrical coordinates by $0 \leq r \leq 1,0 \leq \theta \leq 2 \pi,-1 \leq z \leq 1$. Thus,

$$
\begin{aligned}
\iiint_{D}\left(z^{2} x^{2}+z^{2} y^{2}\right) d x d y d z & =\int_{-1}^{1} \int_{0}^{2 \pi} \int_{0}^{1}\left(z^{2} r^{2}\right) r d r d \theta d z \\
& =\left.\int_{-1}^{1} \int_{0}^{2 \pi} z^{2} \frac{r^{4}}{4}\right|_{r=0} ^{1} d \theta d z \\
& =\int_{-1}^{1} \frac{2 \pi}{4} z^{2} d z=\frac{\pi}{3}
\end{aligned}
$$

4. Triple Integrals in Spherical Coordinates

Definition 4. Spherical coordinates represent a point P in space by ordered triples (ρ, ϕ, θ) in which
(1) ρ is the distance from P to the origin $(\rho \geq 0)$,
(2) ϕ is the angle $O P$ makes with the positive z-axis $(0 \leq \phi \leq \pi)$,
(3) θ is the angle from cylindrical coordinates.

Equations Relating Spherical Coordinates to Cartesian Coordinates.

$$
\begin{aligned}
& r=\rho \sin \phi, x=r \cos \theta=\rho \sin \phi \cos \theta, \\
& z=\rho \cos \phi, y=r \sin \theta=\rho \sin \phi \sin \theta
\end{aligned}
$$

We keep $\rho>0,0 \leq \theta<2 \pi$ and $0 \leq \phi<\pi$ to get a one-one mapping. The Jacobian determinant is $J(\rho, \phi, \theta)=-\rho^{2} \sin \phi$. Since $\sin \phi \geq 0$, we have $|J(\rho, \phi, \theta)|=\rho^{2} \sin \phi$ and the change of variable formula is

$$
\iiint_{D} f(x, y, z) d x d y d z=\iiint_{E} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \theta d \pi
$$

Example. Let $D=\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq 4 a^{2}, z \geq a\right\}$. Evaluate $\iiint_{D} \frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}} d V$ using spherical coordinates.

If we allow ϕ to vary independently, then ϕ varies from 0 to $\frac{\pi}{3}$ (see Figure 2). If we fix ϕ and allow θ to vary from 0 to 2π, then we obtain a surface of a cone (see Figure 1). Since only a part of the cone is lying in the given region, for a fixed ϕ and θ, ρ varies from $a \sec \phi$ to $2 a$ (see Figure 1). Therefore, the integral is

$$
\int_{0}^{\frac{\pi}{3}} \int_{0}^{2 \pi} \int_{a \sec \phi}^{2 a} \frac{\cos \phi}{\rho^{2}}|J(\rho, \theta, \phi)| d \rho d \theta d \phi=2 \pi \int_{0}^{\frac{\pi}{3}}(2 a \sin \phi \cos \phi-a \sin \phi) d \phi=\frac{\pi a}{2}
$$

