
DOUBLE INTEGRALS

In one-variable calculus, we have studied the theory of Riemann integration. In this

lecture, we will extend this theory to functions of two variables.

1. Double Integrals on Rectangles

The definition of double integral is similar to the definition of Riemann integral of a

single variable function. Consider the rectangle Q = [a, b]× [c, d], where a, b, c, d ∈ R with

a < b and c < d. Let f : Q → R be a bounded function. Let P1 and P2 be partitions

of [a, b] and [c, d] respectively. Suppose P1 = {x0, x1, . . . , xm} and P2 = {y0, y1, . . . , yn}.

Note that the partition P = P1 × P2 decomposes Q into mn sub-rectangles. Define

mij = inf{f(x, y) : (x, y) ∈ [xi−1, xi]× [yj−1, yj]}

and

Mij = sup{f(x, y) : (x, y) ∈ [xi−1, xi]× [yj−1, yj]},

for i = 1, . . . ,m and j = 1, . . . , n.

We define the lower double sum and the upper double sum for the function f with

respect to the partition P as follows:

L(P, f) =
m∑
i=1

n∑
j=1

mij(xi−xi−1)(yj−yj−1) and U(P, f) =
m∑
i=1

n∑
j=1

Mij(xi−xi−1)(yj−yj−1).

We now define the lower double integral of a bounded function f by

L(f) = sup{L(P, f) : P is a partition of Q}

and the upper double integral of a bounded function f by

L(f) = sup{L(P, f) : P is a partition of Q}.

Definition 1. We say that f is integrable on Q if L(f) = U(f). The common value is

called the double integral, or simply the integral of f on Q, and is denoted by∫∫
Q

f(x, y)dxdy or by

∫∫
Q

fdA.
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Definition 2. If f is integrable and nonnegative, then the volume of the solid under the

surface given by z = f(x, y) and above the rectangle Q is defined to be the double integral

of f over Q, i.e.,

Volume(S) =

∫∫
Q

f(x, y)dxdy,

where

S = {(x, y, z) ∈ R3 : a ≤ x ≤ b, c ≤ y ≤ d and 0 ≤ z ≤ f(x, y)}.

The proof of the following theorem is similar to the single variable case.

Theorem 3. If a function f(x, y) is continuous on a rectangle Q = [a, b]× [c, d], then f

is integrable on Q.

Fubini’s Theorem on Rectangles

The easiest and the most widely used method to evaluate double integrals is to reduce

the problem to a repeated evaluation of Riemann integrals of functions of one variable.

The following result shows when and how this can be done.

Theorem 4 (Fubini’s Theorem). Let f : Q→ R be continuous. Then∫∫
Q

f(x, y)dxdy =

∫ d

c

(∫ b

a

f(x, y)dx

)
dy =

∫ b

a

(∫ d

c

f(x, y)dy

)
dx.

2. Double Integrals over Bounded Sets

In this section we extend the theory of double integrals on rectangles developed in the

first section to double integrals over an arbitrary bounded subset D of R2.

Let D be a bounded subset of R2 and let f : D → R be a bounded function. Consider

a rectangle Q such that D ⊆ Q. Define a function f ∗ : Q→ Q by

f ∗(x, y) =

f(x, y) if (x, y) ∈ D,

0 otherwise.

We say that f is integrable over D if f ∗ is integrable on Q, and in this case, the double

integral of f (over D) is defined to be the double integral of f ∗ (on Q), that is,∫∫
D

f(x, y)dxdy =

∫∫
Q

f ∗(x, y)dxdy.

Remark 5. We can show that the integrability of f over D and the value of its double

integral are independent of the choice of a rectangle Q containing D and the corresponding

extension f ∗ of f to Q.
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Definition 6. If D is a bounded subset of R2 and f : D → R is integrable and nonneg-

ative,, then the volume of the solid under the surface given by z = f(x, y) and above the

region D is defined to be the double integral of f over D, i.e.,

Volume(S) =

∫∫
D

f(x, y)dxdy,

where

S = {(x, y, z) ∈ R3 : (x, y) ∈ D and 0 ≤ z ≤ f(x, y)}.

Fubini’s Theorem over Elementary Regions

We have seen a useful method of evaluating a double integral on a rectangle by con-

verting it to an iterated integral. The relevant result of Fubini, when generalized to some

special regions of R2 which are called elementary regions, yields the most convenient way

to calculate double integrals.

Let f1, f2 : [a, b]→ R such that f1 and f2 are Riemann integrable, f1 ≤ f2, and

D1 = {(x, y) ∈ R2 : a ≤ x ≤ b and f1(x) ≤ y ≤ f2(x)},

and let g1, g2 : [c, d]→ R such that g1 and g2 are Riemann integrable, g1 ≤ g2, and

D2 = {(x, y) ∈ R2 : c ≤ y ≤ d and g1(x) ≤ x ≤ g2(x)},

then D1 and D2 are called elementary regions.

Theorem 7 (Fubini’s Theorem (Stronger form)). (1) Let f be an integrable function

the elementary region D1. If for each fixed x ∈ [a, b], the Riemann integral
f2(x)∫
f1(x)

f(x, y)dy exists, then

∫∫
D

f(x, y)dxdy =

∫ b

a

(∫ f2(x)

f1(x)

f(x, y)dy

)
dx.

(2) Let f be an integrable function the elementary region D2. If for each fixed y ∈ [c, d],

the Riemann integral
g2(x)∫
g1(x)

f(x, y)dx exists, then

∫∫
D

f(x, y)dxdy =

∫ d

c

(∫ g2(x)

g1(x)

f(x, y)dx

)
dy.
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Example. Evaluate the integral
∫∫

D
(x+ y)2dxdy, where D is the region bounded by the

lines joining the points (0, 0), (0, 1) and (2, 2).

The domain D (see Figure 1(a)) is like the elementary region D1 above, i.e., D =

{(x, y) ∈ R2 : 0 ≤ x ≤ 2 and x ≤ y ≤ x
2

+ 1}. Therefore, by second part of Theorem 7,∫∫
D

(x + y)2dxdy =

∫ 2

0

(∫ x
2
+1

x

(x + y)2dy

)
dx.

We evaluated the integral in the order dydx. What if we change the order of integration to

dxdy. Then we have to apply first part of Theorem 7. The region of integration becomes

D = D′ ∪ D′′ = {(x, y) ∈ R2 : 0 ≤ y ≤ 1 and 0 ≤ x ≤ y} ∪ {(x, y) ∈ R2 : 1 ≤ y ≤

2 and 2(y − 1) ≤ x ≤ y} (see Figure 1(b)). Thus,∫∫
D

(x + y)2dxdy =

∫ 1

0

(∫ y

0

(x + y)2dx

)
dy +

∫ 2

1

(∫ y

2(y−1)
(x + y)2dx

)
dy.

Verify that the value of the integral in both cases are equal.

Example. Evaluate
2∫
0

(
1∫

y/2

ex
2
dx

)
dy .

The region D of integration (see Figure 2) is given by D = {(x, y) ∈ R2 : 0 ≤ y ≤ 2, y
2
≤

x ≤ 1}. Here, we are given two consecutive single integrals. First we have to integrate

w.r.t. x and then w.r.t. y. However, the integral
1∫

y/2

ex
2
dx cannot be evaluated in terms

of simple known functions. So, we will use Fubini’s theorem and change the order of

integration, i.e., from dxdy to dydx. Note that when we change the order of integration

the limits will change. Then the region of integration becomes D = {(x, y) ∈ R2 : 0 ≤
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x ≤ 1, 0 ≤ x ≤ 2x} (see Figure 2). Thus, by first part of Theorem 7,∫∫
D

f(x, y)dydx =

∫ 1

0

(∫ 2x

0

ex
2

dy

)
dx = e− 1.
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