HIGHER ORDER PARTIAL DERIVATIVES

Consider a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. If $f_{x}\left(x_{0}, y_{0}\right)$ exists at every $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$, we obtain a function $f_{x}: \mathbb{R}^{2} \rightarrow \mathbb{R}$. So, we can consider the partial derivative of f_{x} w.r.t. x and y. These partial derivatives, if exist at $\left(x_{0}, y_{0}\right)$, are denoted by $f_{x x}\left(x_{0}, y_{0}\right)$ and $f_{x y}\left(x_{0}, y_{0}\right)$ respectively. In case f_{y} is defined on \mathbb{R}^{2}, we can similarly define the partial derivative of f_{y} w.r.t. x and y, and if they exist at $\left(x_{0}, y_{0}\right)$, they are denoted by $f_{y x}\left(x_{0}, y_{0}\right)$ and $f_{y y}\left(x_{0}, y_{0}\right)$ respectively. These partial derivatives are sometimes denoted by

$$
\frac{\partial^{2} f}{\partial x^{2}}\left(x_{0}, y_{0}\right), \frac{\partial^{2} f}{\partial y \partial x}\left(x_{0}, y_{0}\right), \frac{\partial^{2} f}{\partial x \partial y}\left(x_{0}, y_{0}\right), \text { and } \frac{\partial^{2} f}{\partial y^{2}}\left(x_{0}, y_{0}\right)
$$

instead of $f_{x x}\left(x_{0}, y_{0}\right), f_{x y}\left(x_{0}, y_{0}\right), f_{y x}\left(x_{0}, y_{0}\right)$ and $f_{y y}\left(x_{0}, y_{0}\right)$, respectively. Collectively, these are referred to as the second-order partial derivatives or simply the second partials of f at $\left(x_{0}, y_{0}\right)$. Among these, the middle two, namely, $f_{x y}\left(x_{0}, y_{0}\right)$ and $f_{y x}\left(x_{0}, y_{0}\right)$ are called the mixed (second-order) partial derivatives of f, or simply the mixed partials of f.

The order in which x and y appear in mixed partial derivatives can sometimes be a matter of confusion. The order may be easier to remember if one notes that

$$
f_{x y}=\left(f_{x}\right)_{y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial y \partial x} \text { and } f_{y x}=\left(f_{y}\right)_{x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial x \partial y}
$$

Example. Let

$$
f(x, y)= \begin{cases}x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

We note that

$$
f_{x y}(0,0)=\lim _{k \rightarrow 0} \frac{f_{x}(0, k)-f_{x}(0,0)}{k} \text { and } f_{y x}(0,0)=\lim _{h \rightarrow 0} \frac{f_{y}(h, 0)-f_{y}(0,0)}{h} .
$$

Now,

$$
f_{x}(0, k)=\lim _{h \rightarrow 0} \frac{f(h, k)-f(0, k)}{h}=\lim _{h \rightarrow 0} \frac{k\left(h^{2}-k^{2}\right)}{h^{2}+k^{2}}=-k,
$$

and

$$
f_{y}(h, 0)=\lim _{k \rightarrow 0} \frac{f(h, k)-f(h, 0)}{k}=\lim _{k \rightarrow 0} \frac{h\left(h^{2}-k^{2}\right)}{h^{2}+k^{2}}=h .
$$

Therefore,

$$
f_{x y}(0,0)=\lim _{k \rightarrow 0} \frac{-k-0}{k}=-1 \text { and } f_{y x}(0,0)=\lim _{h \rightarrow 0} \frac{h-0}{h}=1 .
$$

So, in general $f_{x y}$ may not be equal to $f_{y x}$. We get equality of mixed second-order partial derivatives if one of them is continuous. In fact,

Theorem 1 (Mixed Partials Theorem). Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be such that both f_{x} and f_{y} exist in a neighborhood B of $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$. If $f_{x y}$ or $f_{y x}$ exists on B and is continuous at $\left(x_{0}, y_{0}\right)$, then both $f_{x y}$ oand $f_{y x}$ exist and

$$
f_{x y}\left(x_{0}, y_{0}\right)=f_{y x}\left(x_{0}, y_{0}\right)
$$

Remark 2. In the above example, we can verify that $f_{x}, f_{y}, f_{x y}$ and $f_{y x}$ exist on $\mathbb{R}^{2} \backslash\{(0,0)\}$. Thus, from the above Theorem, it follows that neither $f_{x y}$ nor $f_{y x}$ can be continuous at $(0,0)$.

