
DIFFERENTIABILITY, DIRECTIONAL DERIVATIVES AND GRADIENT

In this lecture we will show that if a function is differentiable, then all its directional deriva-

tives exist and they can be computed using the derivative of f .

1. Relation between Differentiability and Directional Derivatives

The next theorem tells us how we can recover the directional derivative from the derivative

of a function.

Theorem 1. Let f : Rn → Rm be differentiable at X ∈ Rn. Then DUf(X) exists for all

U ∈ Rn, ||U || = 1 and we have

DUf(X) = Df(X)(U). (1)

Proof. Let U ∈ Rn, ||U || = 1. Suppose Df(X) exists. Then

f(X + tU)− f(X)−Df(X)(tU) = ||tU ||ε(tU)

=⇒ f(X + tU)− f(X)− tDf(X)(U) = |t|ε(tU), (∵ Df(X) is linear, ||U || = 1)

=⇒ f(X + tU)− f(X)− tDf(X)(U)

t
=
|t|
t
ε(tU),

=⇒
∣∣∣∣∣∣∣∣f(X + tU)− f(X)

t
−Df(X)(U)

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣ |t|t ε(tU)

∣∣∣∣∣∣∣∣ = ε(tU)|| → 0 as t→ 0,

(∵ t→ 0 =⇒ ||tU || = |t| → 0).

Therefore,

DUf(X) = lim
t→0

f(X + tU)− f(X)

t
= Df(X)(U).

�

2. Jacobian Matrix

Let f : Rn → Rm be a differentiable function at X ∈ Rn. Then the derivative Df(X) :

Rn → Rm is a linear map. We know that any such linear map with respect to the standard (or

canonical) basis is represented by an m × n matrix, say M , and Df(X)(v) = Mv. Here, we

are considering elements of Rn as column vectors. Let us try to identify the matrix M .

Let {e1, . . . , en} and {v1, . . . , vm} be the standard (or canonical) basis of Rn and Rm respec-

tively. Then the j-th column of M is given by

Mej = Df(X)(ej) = Dejf(X) =
∂f

∂xj
(X). (2)
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Now, for any X ∈ Rn, f(X) ∈ Rm, so it has m components. Thus, we can write f(X) =

(f1(X), f2(X), . . . , fm(X), where fi : Rn → R, i = 1, 2, . . . ,m are called the coordinate func-

tions of f . Sometime we write f = (f1, f2, . . . , fm). One can show that convergence of function

from Rn to Rm reduces to coordinate-wise convergence. So, if we consider f as a column vector,

it can be shown that

∂f

∂xj
(X) =


∂f1
∂xj

(X)

∂f2
∂xj

(X)
...

∂fm
∂xj

(X)


Therefore, the matrix of Df(X) becomes

∂f1
∂x1

(X) ∂f1
∂x2

(X) · · · ∂f1
∂xn

(X)

∂f2
∂x1

(X) ∂f2
∂x2

(X) · · · ∂f2
∂xn

(X)
...

...
. . .

...

∂fm
∂x1

(X) ∂fm
∂x2

(X) · · · ∂fm
∂xn

(X)

 .

This matrix is denoted by Jf(X), and is called the Jacobian matrix of f at X.

Gradient. In the case when f : Rn → R, the Jacobian matrix of f at X becomes(
∂f

∂x1
(X),

∂f

∂x2
(X), · · · , ∂f

∂xn
(X)

)
.

This vector is called the gradient of f at X and is denoted by ∇f(X).

3. Functions of Two Variables

In this section we will focus on functions f : R2 → R. If f is differentiable at X = (x0, y0),

then the derivative Df(X) is given by ∇f(X) =
(

∂f
∂x

(X), ∂f
∂y

(X)
)

. Thus, in order to prove that

the function f is differentiable at (x0, y0), we have to show that the error function

ε(h, k) =
f(x0 + h, y0 + k)− f(x0, y0)−∇f(x0, y0)(h, k)

||(h, k)||
→ 0,

as (h, k)→ (0, 0).

Examples.

(1) Let f : R2 → R be given by f(x, y) =
√
|xy|. We have seen that ∇f(0, 0) = (0, 0).

Now,

ε(h, k) =
f(h, k)− f(0, 0)−∇f(0, 0)(h, k)

||(h, k)||
=

√
|hk|√

h2 + k2
9 0 as (h, k)→ (0, 0).

Hence, f is not differentiable at (0, 0).
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We can show this using Theorem 1 also. Given a unit vector (u1, u2) in R2 and any

t ∈ R with t 6= 0, we have

f(0 + tu1, 0 + tu2)− f(0, 0)

t
=
|t|
√
|u1u2|
t

.

It follows that the directional derivative D(u1,u2)f(0, 0) does not exist whenever u1 and

u2 are nonzero. Hence, by Theorem 1 we conclude that f is not differentiable at (0, 0).

(2) Let

f(x, y) =

xy
x2−y2
x2+y2

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0).

Verify that ∇f(0, 0) = (0, 0). Thus,

|ε(h, k)| =
∣∣∣∣f(h, k)− f(0, 0)−∇f(0, 0)(h, k)

||(h, k)||

∣∣∣∣ =

∣∣∣∣ hk(h2 − k2)
(h2 + k2)

√
h2 + k2

∣∣∣∣
≤
∣∣∣∣ hk√
h2 + k2

∣∣∣∣ ≤ |h2 + k2|
2
√
h2 + k2

=

√
h2 + k2

2
→ 0 as (h, k)→ (0, 0).

Hence, f is differentiable at (0, 0) and Df(0, 0) = (0, 0).

Problem 2. Define the function f : R2 → R by

f(x, y) =


x2(x−y)
x2+y2

, if (x, y) 6= (0, 0)

0, if (x, y) = (0, 0).

Answer the following questions.

(1) Discuss the continuity of f at (0, 0).

(2) Evaluate fy(x, 0) for x 6= 0.

(3) Is fy continuous at (0, 0).

(4) Find all directional derivative of f at (0, 0).

(5) Discuss the differentiability of f at (0, 0).

Solution. (1) |f(x, y)− f(0, 0)| = |x
2(x−y)
x2+y2

| ≤ |x− y| −→ 0 as (x, y) −→ 0.

Thus, f is continuous at (0, 0).

(2)

fy(x, 0) = lim
h→0

f(x, h)− f(x, 0)

h

= lim
h→0

x2(x−h)
x2+h2 − x

h
= −1.
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(3) fy(0, 0) = lim
h→0

f(0, h)− f(0, 0)

h
= 0.

Since fy(x, 0) 9 fy(0, 0) as x→ 0, fy is not continuous at (0, 0).

(4) The directional derivative of f at (0, 0) in the direction of (u1, u2) is

D(u1,u2)f(0, 0) = lim
t→0

f((0, 0) + t(u1, u2))− f(0, 0)

t

= lim
t→0

t2u21(t(u1 − u2))
t(t2u21 + t2u22)

=
u21(u1 − u2)
u21 + u22

.

(5) fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= 1. Thus, ∇f(0, 0) = (1, 0).

Let H = (h, k) ∈ R2. Then,

|ε(H)| =
∣∣∣∣f(h, k)− f(0, 0)− hfx(0, 0)− kfy(0, 0)

||H||

∣∣∣∣
=

∣∣∣∣∣
h2(h−k)
h2+k2

− h
√
h2 + k2

∣∣∣∣∣
=

∣∣∣∣ hk(h+ k)

(h2 + k2)3/2

∣∣∣∣.
Take h = k. Then ε(h, h) = 1√

2
9 0 as h → 0. Therefore, f is not differentiable at

(0, 0).

�

In the above example, we have seen that f is continuous at (0, 0) and all directional derivatives

of f at (0, 0) exist, but f is not differentiable at (0, 0). So, at this point it is natural to ask under

what assumptions on the directional (or partial) derivatives the function becomes differentiable.

The following criterion answer this question.

Theorem 3. Let f : R2 → R be such that both fx and fy exist in a neighborhood of (x0, y0),

and one of them is continuous at (x0, y0), then f is differentiable at (x0, y0).


	1. Relation between Differentiability and Directional Derivatives
	2. Jacobian Matrix
	Gradient

	3. Functions of Two Variables
	Examples


