THE EUCLIDEAN SPACES

Algebraic and Metric Structure of \mathbb{R}^{n}

In our study of this course so far, we have focussed on real-valued functions of one variable, i.e., functions $f: D \rightarrow \mathbb{R}$, where D is a subset of \mathbb{R}. We have seen that the set of real numbers \mathbb{R} is more than just a collection of points. It has various algebraic and order structures that play an important role in the development of our subject. The same is true for the n-dimensional Euclidean space $\mathbb{R}^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}\right\}$ which we will study in this and the coming lectures. We will also study the properties of functions of several variables, i.e., functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

In the course of Linear Algebra, we have seen that \mathbb{R}^{n} is vector space over \mathbb{R} under the operations

$$
\left(x_{1}, \ldots, x_{n}\right)+\left(y_{1}, \ldots, y_{n}\right)=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right) \text { and } \alpha\left(x_{1}, \ldots, x_{n}\right)=\left(\alpha x_{1}, \ldots, \alpha x_{n}\right),
$$

for all $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$ and $\alpha \in \mathbb{R}$.
We have also seen that the vector space $\mathbb{R}^{n}(\mathbb{R})$ is an inner product space with the inner product (dot product)

$$
\left\langle\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right\rangle=x_{1} y_{1}+\cdots x_{n} y_{n}
$$

The norm of a vector $x=\left(x_{1}, \ldots, x_{n}\right)$ is defined as $\|x\|=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$. The distance between $x, y \in \mathbb{R}^{n}$ is defined as $d(x, y)=\|x-y\|$.

We recall the following important inequality.

Theorem 1 (Cauchy-Schwartz Inequality). Let $x, y \in \mathbb{R}^{n}$. Then $|\langle x, y\rangle| \leq\|x\|\|\mid y\|$.

It follows form the Cauchy-Schwartz Inequality that if $x, y \in \mathbb{R}^{n}$ are nonzero vectors, then $-1 \leq \frac{|\langle x, y\rangle|}{\|x\|\|y\|} \leq 1$. Any number in $[-1,1]$ is the cosine of a unique angle between 0 and π. The following definition is anticipated.

Definition 2. The angle θ between x and y is defined to be

$$
\theta=\cos ^{-1}\left(\frac{|\langle x, y\rangle|}{\|x\|\|\mid\| y \|}\right)
$$

Elementary Topology of \mathbb{R}^{n}

We start with generalizing the notion of intervals.

Definition 3. Let $x \in \mathbb{R}^{n}$ and let $r>0$. The set

$$
B(x, r)=\left\{y \in \mathbb{R}^{n}:\|y-x\|<r\right\}
$$

is called the open ball of radius r centered at x.

This set consist of those points whose distance from x is less than r. How $B(x, r)$ looks like in $\mathbb{R}, \mathbb{R}^{2}$ and \mathbb{R}^{3} ?

Definition 4. A sequence in \mathbb{R}^{n} is a function $f: \mathbb{N} \rightarrow \mathbb{R}^{n}$.

As was the case for sequences in \mathbb{R}, we let $x_{k}=f(k)$ and we will use the notation $\left(x_{k}\right)$ to denote sequences in \mathbb{R}^{n}. Since each x_{k} is a vector in \mathbb{R}^{n}, we can write x_{k} using double subscript notation $x_{k}=\left(x_{k 1}, \ldots, x_{k n}\right)$.

Examples. Some sequences $\left(x_{k}\right)$ in \mathbb{R}^{2} and \mathbb{R}^{3}.
a) $x_{k}=\left(e^{k}, k^{2}\right)$
b) $x_{k}=\left(\frac{1}{k}, \frac{1}{k!}\right)$
c) $x_{k}=\left(\cos \frac{\pi}{k}, \sin \frac{\pi}{k}\right)$
d) $x_{k}=\left(\frac{\log k}{k}, \frac{k^{2}}{e^{k}},(-1)^{k}\right)$
e) $x_{k}=\left(\sqrt{k+1}-\sqrt{k}, \frac{1}{e}, k \pi\right)$ f) $x_{k}=(1,-1, \sqrt{2})$

Definition 5. Let $\left(x_{k}\right)$ be a sequence in \mathbb{R}^{n},
(1) $\left(x_{k}\right)$ is called bounded if there exists $M>0$ such $\left\|x_{k}\right\| \leq M$ for all $k \in \mathbb{N}$.
(2) We say that $\left(x_{k}\right)$ converge to a point $x \in \mathbb{R}^{n}$ if for every $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that $\left\|x_{k}-x\right\|<\varepsilon$ for all $k \geq N$. In this case, we write $\lim _{k \rightarrow \infty} x_{k}=x$ or $x_{k} \rightarrow x$ as $k \rightarrow \infty$ or simply $x_{k} \rightarrow x$.

A sequence that is not convergent is said to be divergent.

Definition 6. Let $E \subseteq \mathbb{R}^{n}$.
(1) A point $x \in E$ is called an interior point of E if there exists $r>0$ such that $B(x, r) \subset E$.
(2) E is called open if every point of E is an interior point.
(3) E is called closed if $\mathbb{R}^{n} \backslash E$ is open. Equivalently, E is closed if and only if for any sequence $\left(x_{k}\right)$ in E such that $x_{k} \rightarrow x$, we have $x \in E$.
(4) A point $x \in \mathbb{R}^{2}$ is called a boundary point of E if for every $r>0, B(x, r) \cap E \neq \emptyset$ and $B(x, r) \cap\left(\mathbb{R}^{n} \backslash E\right) \neq \emptyset$. The set of boundary points of E is called the boundary of E and is denoted by ∂E.

The next theorem shows that convergence in \mathbb{R}^{n} can be described in terms of coordinatewise convergence.

Theorem 7. Let $\left(x_{k}\right)=\left(\left(x_{k 1}, \ldots, x_{k n}\right)\right)$ be a sequence in \mathbb{R}^{n}, and let $x=\left(x_{1}, \ldots, x_{n}\right) \in$ \mathbb{R}^{n}. Then $x_{k} \rightarrow x$ as $k \rightarrow \infty$ if and only if for each $j=1, \ldots, n, x_{k j} \rightarrow x_{j}$ as $k \rightarrow \infty$.

Proof. Observe that for each $j=1, \ldots, n$, we have

$$
\left|x_{k j}-x_{j}\right| \leq \| x_{k}-x| | \leq \sum_{i=1}^{n}\left|x_{k i}-x_{i}\right| .
$$

If $x_{k} \rightarrow x$ as $k \rightarrow \infty$, i.e., $\left\|x_{k}-x\right\| \rightarrow 0$ as $k \rightarrow \infty$, then from the above inequality, we have $\left|x_{k j}-x_{j}\right| \rightarrow 0$ as $k \rightarrow \infty$ for each $j=1, \ldots, n$.

Conversely, if for each $j=1, \ldots, n$, we have $\left|x_{k j}-x_{j}\right| \rightarrow 0$ as $k \rightarrow \infty$, then $\sum_{i=1}^{n} \mid x_{k i}-$ $x_{i} \mid \rightarrow 0 k \rightarrow \infty$. This implies that $\left\|x_{k}-x\right\| \rightarrow 0 k \rightarrow \infty$.

Examples.

(1) $\left(\left(e^{k}, k^{2}\right)\right)$ is divergent since $\left(k^{2}\right)$ is divergent.
(2) $\left(\frac{1}{k}, \frac{1}{k!}\right) \rightarrow(0,0)$.
(3) $\left(\left(\cos \frac{\pi}{k}, \sin \frac{\pi}{k}\right)\right)$ is divergent because both sequences $\left(\cos \frac{\pi}{k}\right)$ and $\left(\sin \frac{\pi}{k}\right)$ diverge.
(4) $\left(\left(\frac{\log k}{k}, \frac{k^{2}}{e^{k}},(-1)^{k}\right)\right)$ diverges.
(5) $\left(\left(\sqrt{k+1}-\sqrt{k}, \frac{1}{e}, k \pi\right)\right)$ diverges.
(6) $(1,-1, \sqrt{2}) \rightarrow(1,-1, \sqrt{2})$.

Examples.

(1) The intervals $(a, b),[a, b]$ and $(a, b]$ is open, closed, neither open nor closed respectively.
(2) The set $E_{1}=\left\{(x, y) \in \mathbb{R}^{2}: y=0\right\}$ is closed but not open.
(3) The set $E_{2}=\left\{(x, y, z) \in \mathbb{R}^{3}:\|(x, y, z)\|<1\right\}$ is open but not closed.
(4) The set $E_{3}=\mathbb{Q} \times \mathbb{Q}$ is neither open nor closed.

Proposition 8. Every convergent sequence in \mathbb{R}^{n} is bounded.

Proof. Exercise.

Definition 9. Let $\left(x_{k}\right)=\left(\left(x_{k 1}, \ldots, x_{k n}\right)\right)$ be a sequence in \mathbb{R}^{n}. If k_{1}, k_{2}, \ldots are positive integers such that $k_{j}<k_{j+1}$ for each $j \in \mathbb{N}$, then the sequence $\left(x_{k_{j}}\right)$ is called a subsequence of $\left(x_{k}\right)$.

Exercise 10. Give an example of a subsequence for some of the sequences given in this lecture.

Theorem 11 (Bolzano-Weierstrass). Every bounded sequence in \mathbb{R}^{n} has a convergent subsequence.

