THE EUCLIDEAN SPACES

Algebraic and Metric Structure of \mathbb{R}^n

In our study of this course so far, we have focussed on real-valued functions of one variable, i.e., functions $f: D \to \mathbb{R}$, where D is a subset of \mathbb{R} . We have seen that the set of real numbers \mathbb{R} is more than just a collection of points. It has various algebraic and order structures that play an important role in the development of our subject. The same is true for the *n*-dimensional Euclidean space $\mathbb{R}^n = \{(x_1, x_2, \ldots, x_n) : x_1, x_2, \ldots, x_n \in \mathbb{R}\}$ which we will study in this and the coming lectures. We will also study the properties of functions of several variables, i.e., functions $f: \mathbb{R}^n \to \mathbb{R}^m$.

In the course of Linear Algebra, we have seen that \mathbb{R}^n is vector space over \mathbb{R} under the operations

$$(x_1, \ldots, x_n) + (y_1, \ldots, y_n) = (x_1 + y_1, \ldots, x_n + y_n)$$
 and $\alpha(x_1, \ldots, x_n) = (\alpha x_1, \ldots, \alpha x_n),$

for all $(x_1, \ldots, x_n), (y_1, \ldots, y_n) \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$.

We have also seen that the vector space $\mathbb{R}^n(\mathbb{R})$ is an inner product space with the inner product (dot product)

$$\langle (x_1,\ldots,x_n), (y_1,\ldots,y_n) \rangle = x_1 y_1 + \cdots + x_n y_n.$$

The norm of a vector $x = (x_1, \ldots, x_n)$ is defined as $||x|| = \sqrt{x_1^2 + \cdots + x_n^2}$. The distance between $x, y \in \mathbb{R}^n$ is defined as d(x, y) = ||x - y||.

We recall the following important inequality.

Theorem 1 (Cauchy-Schwartz Inequality). Let $x, y \in \mathbb{R}^n$. Then $|\langle x, y \rangle| \leq ||x||||y||$.

It follows form the Cauchy-Schwartz Inequality that if $x, y \in \mathbb{R}^n$ are nonzero vectors, then $-1 \leq \frac{|\langle x, y \rangle|}{||x||||y||} \leq 1$. Any number in [-1, 1] is the cosine of a unique angle between 0 and π . The following definition is anticipated.

Definition 2. The angle θ between x and y is defined to be

$$\theta = \cos^{-1}\left(\frac{|\langle x, y \rangle|}{||x||||y||}\right).$$

Elementary Topology of \mathbb{R}^n

We start with generalizing the notion of intervals.

Definition 3. Let $x \in \mathbb{R}^n$ and let r > 0. The set

$$B(x, r) = \{ y \in \mathbb{R}^n : ||y - x|| < r \}$$

is called the open ball of radius r centered at x.

This set consist of those points whose distance from x is less than r. How B(x, r) looks like in \mathbb{R} , \mathbb{R}^2 and \mathbb{R}^3 ?

Definition 4. A sequence in \mathbb{R}^n is a function $f : \mathbb{N} \to \mathbb{R}^n$.

As was the case for sequences in \mathbb{R} , we let $x_k = f(k)$ and we will use the notation (x_k) to denote sequences in \mathbb{R}^n . Since each x_k is a vector in \mathbb{R}^n , we can write x_k using double subscript notation $x_k = (x_{k1}, \ldots, x_{kn})$.

Examples. Some sequences (x_k) in \mathbb{R}^2 and \mathbb{R}^3 .

a)
$$x_k = (e^k, k^2)$$
 b) $x_k = (\frac{1}{k}, \frac{1}{k!})$ c) $x_k = (\cos \frac{\pi}{k}, \sin \frac{\pi}{k})$

d)
$$x_k = (\frac{\log k}{k}, \frac{k^2}{e^k}, (-1)^k)$$
 e) $x_k = (\sqrt{k+1} - \sqrt{k}, \frac{1}{e}, k\pi)$ f) $x_k = (1, -1, \sqrt{2})$

Definition 5. Let (x_k) be a sequence in \mathbb{R}^n ,

- (1) (x_k) is called bounded if there exists M > 0 such $||x_k|| \leq M$ for all $k \in \mathbb{N}$.
- (2) We say that (x_k) converge to a point $x \in \mathbb{R}^n$ if for every $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $||x_k - x|| < \varepsilon$ for all $k \ge N$. In this case, we write $\lim_{k\to\infty} x_k = x$ or $x_k \to x$ as $k \to \infty$ or simply $x_k \to x$.

A sequence that is not convergent is said to be divergent.

Definition 6. Let $E \subseteq \mathbb{R}^n$.

- (1) A point $x \in E$ is called an interior point of E if there exists r > 0 such that $B(x,r) \subset E$.
- (2) E is called **open** if every point of E is an interior point.
- (3) E is called closed if $\mathbb{R}^n \setminus E$ is open. Equivalently, E is closed if and only if for any sequence (x_k) in E such that $x_k \to x$, we have $x \in E$.
- (4) A point $x \in \mathbb{R}^2$ is called a **boundary point** of E if for every r > 0, $B(x, r) \cap E \neq \emptyset$ and $B(x, r) \cap (\mathbb{R}^n \setminus E) \neq \emptyset$. The set of boundary points of E is called the boundary of E and is denoted by ∂E .

The next theorem shows that convergence in \mathbb{R}^n can be described in terms of coordinatewise convergence. **Theorem 7.** Let $(x_k) = ((x_{k1}, \ldots, x_{kn}))$ be a sequence in \mathbb{R}^n , and let $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$. Then $x_k \to x$ as $k \to \infty$ if and only if for each $j = 1, \ldots, n, x_{kj} \to x_j$ as $k \to \infty$.

Proof. Observe that for each $j = 1, \ldots, n$, we have

$$|x_{kj} - x_j| \le ||x_k - x|| \le \sum_{i=1}^n |x_{ki} - x_i|.$$

If $x_k \to x$ as $k \to \infty$, i.e., $||x_k - x|| \to 0$ as $k \to \infty$, then from the above inequality, we have $|x_{kj} - x_j| \to 0$ as $k \to \infty$ for each j = 1, ..., n.

Conversely, if for each j = 1, ..., n, we have $|x_{kj} - x_j| \to 0$ as $k \to \infty$, then $\sum_{i=1}^n |x_{ki} - x_i| \to 0$ $k \to \infty$. This implies that $||x_k - x|| \to 0$ $k \to \infty$.

Examples.

- (1) $((e^k, k^2))$ is divergent since (k^2) is divergent.
- (2) $\left(\frac{1}{k}, \frac{1}{k!}\right) \to (0, 0).$
- (3) $\left(\left(\cos\frac{\pi}{k},\sin\frac{\pi}{k}\right)\right)$ is divergent because both sequences $\left(\cos\frac{\pi}{k}\right)$ and $\left(\sin\frac{\pi}{k}\right)$ diverge.
- (4) $\left(\left(\frac{\log k}{k}, \frac{k^2}{e^k}, (-1)^k\right)\right)$ diverges.
- (5) $\left(\left(\sqrt{k+1} \sqrt{k}, \frac{1}{e}, k\pi\right)\right)$ diverges.

(6)
$$(1, -1, \sqrt{2}) \to (1, -1, \sqrt{2}).$$

Examples.

- The intervals (a, b), [a, b] and (a, b] is open, closed, neither open nor closed respectively.
- (2) The set $E_1 = \{(x, y) \in \mathbb{R}^2 : y = 0\}$ is closed but not open.
- (3) The set $E_2 = \{(x, y, z) \in \mathbb{R}^3 : ||(x, y, z)|| < 1\}$ is open but not closed.
- (4) The set $E_3 = \mathbb{Q} \times \mathbb{Q}$ is neither open nor closed.

Proposition 8. Every convergent sequence in \mathbb{R}^n is bounded.

Proof. Exercise.

Definition 9. Let $(x_k) = ((x_{k1}, \ldots, x_{kn}))$ be a sequence in \mathbb{R}^n . If k_1, k_2, \ldots are positive integers such that $k_j < k_{j+1}$ for each $j \in \mathbb{N}$, then the sequence (x_{k_j}) is called a subsequence of (x_k) .

Exercise 10. Give an example of a subsequence for some of the sequences given in this *lecture.*

Theorem 11 (Bolzano-Weierstrass). Every bounded sequence in \mathbb{R}^n has a convergent subsequence.