
THE EUCLIDEAN SPACES

Algebraic and Metric Structure of Rn

In our study of this course so far, we have focussed on real-valued functions of one

variable, i.e., functions f : D → R, where D is a subset of R. We have seen that the set

of real numbers R is more than just a collection of points. It has various algebraic and

order structures that play an important role in the development of our subject. The same

is true for the n-dimensional Euclidean space Rn = {(x1, x2, . . . , xn) : x1, x2, . . . , xn ∈ R}
which we will study in this and the coming lectures. We will also study the properties of

functions of several variables, i.e., functions f : Rn → Rm.

In the course of Linear Algebra, we have seen that Rn is vector space over R under the

operations

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn) and α(x1, . . . , xn) = (αx1, . . . , αxn),

for all (x1, . . . , xn), (y1, . . . , yn) ∈ Rn and α ∈ R.

We have also seen that the vector space Rn(R) is an inner product space with the inner

product (dot product)

〈(x1, . . . , xn), (y1, . . . , yn)〉 = x1y1 + · · ·xnyn.

The norm of a vector x = (x1, . . . , xn) is defined as ||x|| =
√

x2
1 + · · ·+ x2

n. The distance

between x, y ∈ Rn is defined as d(x, y) = ||x− y||.
We recall the following important inequality.

Theorem 1 (Cauchy-Schwartz Inequality). Let x, y ∈ Rn. Then |〈x, y〉| ≤ ||x||||y||.

It follows form the Cauchy-Schwartz Inequality that if x, y ∈ Rn are nonzero vectors,

then −1 ≤ |〈x,y〉|
||x||||y||

≤ 1. Any number in [−1, 1] is the cosine of a unique angle between 0

and π. The following definition is anticipated.

Definition 2. The angle θ between x and y is defined to be

θ = cos−1

( |〈x, y〉|
||x||||y||

)

.

Elementary Topology of Rn

We start with generalizing the notion of intervals.
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Definition 3. Let x ∈ Rn and let r > 0. The set

B(x, r) = {y ∈ Rn : ||y − x|| < r}

is called the open ball of radius r centered at x.

This set consist of those points whose distance from x is less than r. How B(x, r) looks

like in R, R2 and R3?

Definition 4. A sequence in Rn is a function f : N → Rn.

As was the case for sequences in R, we let xk = f(k) and we will use the notation (xk)

to denote sequences in Rn. Since each xk is a vector in Rn, we can write xk using double

subscript notation xk = (xk1, . . . , xkn).

Examples. Some sequences (xk) in R2 and R3.

xk = (ek, k2)a) xk = ( 1
k
, 1
k!
)b) xk = (cos π

k
, sin π

k
)c)

xk = ( log k
k

, k2

ek
, (−1)k)d) xk = (

√
k + 1−

√
k, 1

e
, kπ)e) xk = (1,−1,

√
2)f)

Definition 5. Let (xk) be a sequence in Rn,

(1) (xk) is called bounded if there exists M > 0 such ||xk|| ≤ M for all k ∈ N.

(2) We say that (xk) converge to a point x ∈ Rn if for every ε > 0, there exists N ∈ N

such that ||xk − x|| < ε for all k ≥ N . In this case, we write limk→∞ xk = x or

xk → x as k → ∞ or simply xk → x.

A sequence that is not convergent is said to be divergent.

Definition 6. Let E ⊆ Rn.

(1) A point x ∈ E is called an interior point of E if there exists r > 0 such that

B(x, r) ⊂ E.

(2) E is called open if every point of E is an interior point.

(3) E is called closed if Rn \ E is open. Equivalently, E is closed if and only if for

any sequence (xk) in E such that xk → x, we have x ∈ E.

(4) A point x ∈ R2 is called a boundary point of E if for every r > 0, B(x, r)∩E 6= ∅
and B(x, r)∩ (Rn \E) 6= ∅. The set of boundary points of E is called the boundary

of E and is denoted by ∂E.

The next theorem shows that convergence in Rn can be described in terms of coordinate-

wise convergence.
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Theorem 7. Let (xk) = ((xk1, . . . , xkn)) be a sequence in Rn, and let x = (x1, . . . , xn) ∈
Rn. Then xk → x as k → ∞ if and only if for each j = 1, . . . , n, xkj → xj as k → ∞.

Proof. Observe that for each j = 1, . . . , n, we have

|xkj − xj | ≤ ||xk − x|| ≤
n

∑

i=1

|xki − xi|.

If xk → x as k → ∞, i.e., ||xk − x|| → 0 as k → ∞, then from the above inequality, we

have |xkj − xj | → 0 as k → ∞ for each j = 1, . . . , n.

Conversely, if for each j = 1, . . . , n, we have |xkj −xj | → 0 as k → ∞, then
∑n

i=1 |xki−
xi| → 0 k → ∞. This implies that ||xk − x|| → 0 k → ∞. �

Examples.

(1) ((ek, k2)) is divergent since (k2) is divergent.

(2) ( 1
k
, 1
k!
) → (0, 0).

(3) ((cos π
k
, sin π

k
)) is divergent because both sequences (cos π

k
) and (sin π

k
) diverge.

(4) (( log k
k

, k2

ek
, (−1)k)) diverges.

(5) ((
√
k + 1−

√
k, 1

e
, kπ)) diverges.

(6) (1,−1,
√
2) → (1,−1,

√
2).

Examples.

(1) The intervals (a, b), [a, b] and (a, b] is open, closed, neither open nor closed respec-

tively.

(2) The set E1 = {(x, y) ∈ R2 : y = 0} is closed but not open.

(3) The set E2 = {(x, y, z) ∈ R3 : ||(x, y, z)|| < 1} is open but not closed.

(4) The set E3 = Q×Q is neither open nor closed.

Proposition 8. Every convergent sequence in Rn is bounded.

Proof. Exercise. �

Definition 9. Let (xk) = ((xk1, . . . , xkn)) be a sequence in Rn. If k1, k2, . . . are positive

integers such that kj < kj+1 for each j ∈ N, then the sequence (xkj) is called a subsequence

of (xk).

Exercise 10. Give an example of a subsequence for some of the sequences given in this

lecture.

Theorem 11 (Bolzano-Weierstrass). Every bounded sequence in Rn has a convergent

subsequence.
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