
RIEMANN INTEGRATION

The Riemann Integral

The notion of integration was developed much earlier than differentiation. The main

idea of integration is to assign a real number A, called the “area”, to the region bounded

by the curves x = a, x = b, y = 0, and y = f(x). To proceed formally, we introduce the

following concept.

Definition 1. By a partition P of [a, b] we mean a finite ordered set {x0, x1, . . . , xn} of

points in [a, b] such that

a = x0 < x1 < · · · < xn−1 < xn = b.

Examples.

(1) The simplest partition of [a, b] is given by P1 = {a, b}.

(2) For n ∈ N, let Pn = {x0, x1, . . . , xn}, where

xi = a+
i(b− a)

n
, for i = 0, 1, . . . , n.

Then Pn is a partition that subdivides the interval [a, b] into n subintervals, each

of length (b− a)/n. What happens when n becomes larger?

Let f : [a, b] → R be a bounded function, and P = {x0, x1, . . . , xn} be a partition of

[a, b]. Define

m = inf{f(x) : x ∈ [a, b]} and M = sup{f(x) : x ∈ [a, b]}.

For i = 1, 2, . . . , n,

mi = inf{f(x) : x ∈ [xi−1, xi]} and Mi = sup{f(x) : x ∈ [xi−1, xi]}.

Clearly,

m ≤ mi ≤ Mi ≤ M for all i = 1, 2, . . . , n. (Prove!)

Definition 2. Given a bounded function f : [a, b] → R and a partition P : {x0, x1, . . . , xn}

of [a, b], the lower Riemann1 sum of f with respect to the partition P is defined as

L(P, f) =

n
∑

i=1

mi(xi − xi−1).

1Bernhard Riemann was a German mathematician who made contributions to analysis, number theory,

and differential geometry. A work which Riemann did in 1859 is referred to as the Riemann hypothesis.

Anyone who solves the Riemann hypothesis will earn a million dollar!
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The upper Riemann sum of f with respect to the partition P is defined as

U(P, f) =
n

∑

i=1

Mi(xi − xi−1).

Lemma 3. Let f : [a, b] :→ R be a bounded function. Then for any partition P of [a, b],

we have

m(b− a) ≤ L(P, f) ≤ U(P, f) ≤ M(b− a).

Proof. Exercise. �

Definition 4. The upper and lower Riemann integral of f over [a, b] is respectively defined

as

L(f) =

∫

b

a

f(x)dx = sup{L(P, f) : P is a partition of [a, b]},

and

U(f) =

∫

b

a

f(x)dx = inf{L(P, f) : P is a partition of [a, b]}.

Does these two numbers exist? If the upper and lower Riemann integrals are equal, we

say that f is Riemann integrable or simply integrable. In this case, the common value of

L(f) = U(f) is called the Riemann integral of f (on [a, b] and is denoted by
∫

b

a

f(x)dx or simply

∫

b

a

f.

Examples.

(1) Let f : [a, b] :→ R be a constant function with f(x) = c for all x. Let P be any

partition of [a, b]. Then mi = Mi = c for all i and L(P, f) = U(P, f) = c(b − a).

Thus,
∫

b

a
f(x)dx = c(b−a) =

∫

b

a
f(x)dx, and hence f is Riemann integrable. This

implies that
∫

b

a
f(x)dx = c(b− a).

(2) Let λ > 1 be a real number. Let f : [0, 1] :→ R be defined by

f(x) =











1, if 0 ≤ x < 1,

λ, if x = 1.

Let us find the upper and lower Riemann integrals. Let P = {x0, . . . , xn} be a

partition of [0, 1]. We observe that mi = 1 for i = 1, . . . , n. Moreover, Mi = 1 for

i = 1, . . . , n− 1 and Mn = λ. It follows that

L(P, f) = 1 and

∫

1

0

f(x)dx = 1.

On the other hand, U(P, f) = xn−1 + λ(1− xn−1) and
∫

1

0

f(x)dx = inf{U(P, f) : P is a partition of [0, 1]} = inf(1, λ] = 1 (Verify!).

This shows that f is integrable and
∫

1

0
f(x)dx = 1.
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(3) Consider the Dirichlet’s function, i.e., the function defined by f : [0, 1] → R defined

by f(x) = 1 if x ∈ Q and 0 otherwise. Let P = {x0, . . . , xn} be a partition of

[0, 1]. In any subinterval [xi−1, xi], there exist some rational numbers and irrational

numbers. Hence, mi = 0 and Mi = 1. So, L(P, f) = 0 and U(P, f) = 1. It follows

that
∫

b

a
f(x)dx = 0 and

∫

b

a
f(x)dx = 1. Thus, f is not integrable on [0, 1].

Integrable Functions

Definition 5. Given a partition P of [a, b], we say that a partition P ∗ of [a, b] is a

refinement of P if P ⊂ P ∗. Given partitions P1 and P2 of [a, b], the partition P ∗ = P1∪P2

is called the common refinement of P1 and P2.

Proposition 6. Let f : [a, b] → R be a bounded function. Then we have the following:

(1) If P is partition of [a, b], and P ∗ is a refinement of P , then

L(P, f) ≤ L(P ∗, f) and U(P ∗, f) ≤ U(P, f),

and consequently,

U(P ∗, f)− L(P ∗, f) ≤ U(P, f)− L(P, f).

(2) If P1 and P2 are partitions of [a, b], then L(P1, f) ≤ U(P2, f).

(3)
∫

b

a
f(x)dx ≤

∫

b

a
f(x)dx

In the following result we present a necessary and sufficient condition for the existence

of the integral of a bounded function.

Theorem 7 (Riemann’s criterion for integrability). Let f : [a, b] → R be a bounded

function. Then f is integrable if and only if for every ε > 0, there is a partition Pε of

[a, b] such that

U(Pε, f)− L(Pε, f) < ε.

The proof of the following corollary is immediate from the previous theorem.

Corollary 8. Let f : [a, b] → R be a bounded function. Suppose (Pn) is a sequence of

partitions of [a, b] such that U(Pn, f)− L(Pn, f) → 0. Then f is integrable.

Example. Let f(x) = x2 on [0, 1]. Let ε > 0 be given. Choose a partition P such that

max{xi − xi−1 : 1 ≤ i ≤ n} < ε/2. Since f is increasing, we have

mi = f(xi−1) = x2

i−1
and Mi = f(xi) = x2

i
.
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This implies that

U(P, f)− L(P, f) =
n

∑

i=1

x2

i
(xi − xi−1)−

n
∑

i=1

x2

i−1
(xi − xi−1)

=
n

∑

i=1

(xi − xi−1)(xi + xi−1)((xi − xi−1)

<

n
∑

i=1

[(ε

2

)

× 2
]

(xi − xi−1), since 0 ≤, xi−1, xi ≤ 1

= ε

n
∑

i=1

(xi − xi−1) = ε.

Hence, f is integrable.

We will apply the Riemann’s criterion for integrability to prove the following theorem.

Theorem 9. Let f : [a, b] → R be a function.

(1) If f is monotone, then it is integrable.

(2) If f is continuous, then it is integrable.

Proof. We proof part (1). The the proof of part (2) is left to the reader.

Suppose f is monotonically increasing (the proof is similar in the other case). Choose

a partition P such that xi − xi−1 = b−a

n
for each i. Then Mi = f(xi) and mi = f(xi−1).

Thus, for large n, we have

U(P, f)− L(P, f) =
b− a

n

n
∑

i=1

(f(xi)− f(xi−1)) =
b− a

n

n
∑

i=1

(f(b)− f(a)) < ε.

Hence, f is integrable. �

We end this lecture with the following problem. We encourage students to understand

and verify each step.

Problem 10. Let f : [0, 1] −→ R be defined as

f(x) =











x, x is rational

0, x is irrational.

Evaluate the upper and lower integrals of f and show that f is not integrable.

Solution. Let P = {x0, x1, . . . , xn} be any partition of [0, 1]. Since there exists an irra-

tional number in each subinterval [xi−1, xi], L(P, f) = 0, and hence
∫

1

0
f(x)dx = 0.



RIEMANN INTEGRATION 5

Now,

U(P, f) =
n

∑

i=1

xi(xi − xi−1)

=

n
∑

i=1

x2

i
−

n
∑

i=1

xi−1xi

≥

n
∑

i=1

x2

i
−

1

2

n
∑

i=1

(x2

i−1
+ x2

i
) (Using AM-GM inequality)

=
1

2

n
∑

i=1

(x2

i−1
− x2

i
) =

1

2
.

=⇒

∫

1

0

f(x)dx ≥
1

2
.

For each n ∈ N, consider Pn =
{

0,
1

n
,
2

n
, · · · ,

n− 1

n
,
n

n
= 1

}

.

Then

U(Pn, f) =
n+ 1

2n
=

1

2
+

1

2n

=⇒ inf
{

U(Pn, f) : n ∈ N
}

=
1

2

=⇒

∫

1

0

f(x)dx ≤
1

2
.

Therefore,
∫

1

0
f(x)dx = 1

2
. �
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