
POWER SERIES

In this lecture we will define a class of functions that are very important in Calculus.

So far, you have encountered many transcendental functions1 such as trigonometric, log-

arithmic and exponential functions. You also use to write such functions in the form of

series since your school days. This series is known as Taylor series. We will see that many

classical functions admits a Taylor series and we will study its convergence.

Definition 1. A power series around a is an expression of the form
∑

∞

n=0 an(x − a)n

where an, a, x ∈ R.

If we let x̃ = x − a, then the power series around a can be reduced to a power series

around 0. We are interested in finding x ∈ R for which the series
∑

∞

n=0 anx
n is convergent.

Consider the following three power series.

(1)
∑

∞

n=1 n
nxn. This series converges only at x = 0. Indeed, if x 6= 0, we can choose

N ∈ N such that 1
N

< |x|. Thus, for all n ≥ N , we have |(nx)n| > 1 and hence

the series is divergent.

(2)
∑

∞

n=0 x
n. We have seen that this series converges absolutely for |x| < 1.

(3)
∑

∞

n=0
xn

n!
. Using ratio test we can show that this series converges absolutely for all

x ∈ R.

The general phenomenon is given in the following lemma.

Lemma 2 (Abel’s Lemma). Let x0 ∈ R such that {anxn
0 : n ∈ N} is bounded. Then

∑

∞

n=0 anx
n is absolutely convergent for every x ∈ R with |x| < |x0|. In particular, if

∑

∞

n=0 anx
n
0 is convergent, then

∑

∞

n=0 anx
n is absolutely convergent for all x such that

|x| < |x0|.

1A function f : D(⊆ R) → R is said to be an algebraic function if y = f(x) satisfies an equation whose

coefficients are polynomials, i.e., pn(x)y
n+pn−1(x)y

n−1+ · · ·+p1(x)y+p0(x) = 0 for x ∈ D, where n ∈ N

and p0(x), p1(x), . . . , pn(x) are polynomials such that pn(x) is nonzero. For example, y = f(x) = n

√
x

is an algebraic function since y satisfies the equation yn − x = 0 for x ∈ [0,∞). A real-valued function

that is not algebraic is called a transcendental function. A real number α is called an algebraic number

if it satisfies a nonzero polynomial with integer coefficients. Numbers that are not algebraic are called

transcendental numbers. For example,
√
2,
√
3, 5

√
7 and

√
2 +

√
3 are algebraic numbers. Any rational

number is algebraic. The numbers e and π are transcendental. For more details, see [1] and [2].
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Theorem 3. A power series
∑

∞

n=0 anx
n is either absolutely convergent for all x ∈ R or

there is a unique nonnegative real number R such that the series is absolutely convergent

for all x with |x| < R and is divergent for |x| > R.

Definition 4. We say that the radius of convergence of a power series is ∞ if the

power series is absolutely convergent for all x ∈ R; otherwise, it is defined to be the unique

nonnegative real number R such that the power series is absolutely convergent for all x

with |x| < R and is divergent for |x| > R.

Let S = {x ∈ R :
∑

∞

n=0 anx
n is convergent}. Then S 6= ∅ (Why?).

Exercise. The radius of convergence and the set S for various power series are given

below. Verify?

Power Series Radius of convergence S
∑

∞

n=1 n
nxn 0 {0}

∑

∞

n=1 x
n/n! ∞ (−∞,∞)

∑

∞

n=0 x
n 1 (−1, 1)

∑

∞

n=0 x
n/n2 1 [−1, 1]

∑

∞

n=0 x
n/n 1 [−1, 1)

∑

∞

n=0(−1)nxn/n 1 (−1, 1]

The following result is useful in calculating the radius of convergence of a power series.

Proposition 5. Let
∑

∞

n=0 anx
n be a power series and R be its radius of convergence.

(1) If |an|1/n → ℓ, then

R =























0 if ℓ = ∞,

∞ if ℓ = 0,

1/ℓ if ℓ > 0.

(2) If an 6= 0 eventually and |an+1

an
| → ℓ, then the above conclusion holds.

Taylor and Maclaurin Series

Let f : [a, b] → R be an infinitely differentiable function and c ∈ (a, b). In one of

previous lectures, we have defined the Taylor polynomial of order n generated by f at c

as the polynomial

Pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 + · · ·+ f (n)(c)

n!
(x− c)n =

n
∑

k=0

f (k)(c)

k!
(x− c)k.
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The power series

f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 + · · ·+ f (n)(c)

n!
(x− c)n + · · · =

∞
∑

n=0

f (n)(c)

n!
(x− c)n

is called the Taylor series of f around c. If c = 0, then the Taylor series of f around c is

called the Maclaurin series of f .

Let Rn(x) = f(x)− Pn(x) for x ∈ [a, b]. If Rn(x) → 0 for some x ∈ [a, b], then the nth

partial sum Pn(x) of the Taylor series of f around c converges to f(x), i.e., f(x) is the

sum of the Taylor series.

Now, the following two questions arise.

• At what points x ∈ [a, b], the Taylor series of f around c converge?

• If the Taylor series of f converges for some x, does it converge to f(x)?

If x = c, then Pn(c) = f(c) for all n = 0, 1, . . ., and hence, Rn(c) = 0. Therefore, the

Taylor series of f converges to f(c) at x = c. Consider the following examples.

(1) Let f : R → R defined by f(x) = |x|. Then the Taylor series of f around 1 is

1 + (x− 1). But this is not equal to f(x) when x < 0.

(2) As an extreme case, consider f : R → R defined by

f(x) =











e−1/x2

if x 6= 0,

0 if x = 0.

Show that f is infinitely differentiable on R with f (n)(0) = 0 for all n = 0, 1, . . ..

Thus, the Maclaurin series of f is identically zero and it does not converge to f(x)

at x 6= 0.

Taylor’s theorem helps us to show the convergence of a Taylor series of f to f(x) in the

following way. Recall that Taylor’s theorem says that for x ∈ [a, b] with x 6= c and each

n ∈ N,

Rn(x) =
f (n+1)(cx,n)

(n+ 1)!
(x− c)n+1 for some cx,n between c and x.

It is clear that if Rn(x) → 0, then the Taylor series of f around c converges to f(x).

Problem 6. Show that the Maclaurin series of f(x) = ex converges to f(x) for all x ∈ R.

Solution. By Taylor’s theorem, there exists cx,n between 0 and x such that

ex = 1 + x+
x2

2!
+ · · ·+ ecn,x

(n + 1)!
xn+1.

Since ex is increasing, ecn,x lies between e0 = 1 and ex. If x < 0, then cn,x < 0, and

ecn,x < 1. If x = 0, then ex = 1 and Rn(x) = 0. If x > 0, then cn,x > 0 and ecn,x < ex.
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Thus,
∣

∣

∣

∣

ecn,x

(n+ 1)!
xn+1

∣

∣

∣

∣

≤ |x|n+1

(n+ 1)!
if x ≤ 0, and

∣

∣

∣

∣

ecn,x

(n + 1)!
xn+1

∣

∣

∣

∣

≤ ex
xn+1

(n + 1)!
if x > 0.

Finally, limn→∞

xn+1

(n+1)!
= 0 for every x. Hence, limn→∞Rn(x) = 0. Therefore, the Maclau-

rin series of ex converges to ex for every x. Thus,

ex = 1 + x+
x2

2!
+ · · ·+ xn

n!
+ · · · =

∞
∑

n=0

xn

n!
.

�

Exercise 7. Show that for every x ∈ R,

sin x = x− x3

3!
+

x5

5!
− x7

7!
+ · · ·

and

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ · · · .
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