
CONVERGENCE TESTS FOR SERIES

In this lecture we will give several tests to determine the convergence of a series.

Theorem 1 (Comparison Test). Suppose |an| ≤ bn for all n ≥ k for some k.

(1) If
∑

bn is convergent, then
∑

an is absolutely convergent and |
∑

an| ≤
∑

bn.

(2) If
∑

|an| is divergent, then
∑

bn is also divergent.

Examples.

(1)
∑

1
n!

is convergent as n2 < n! for n ≥ 4.

(2)
∑

1√
n
diverges because 1

n
≤ 1√

n
.

(3)
∑

2n+n
3n+n

converges as 2n+n
3n+n

≤ 2n+2n

3n
= 2(2

3
)n.

Theorem 2 (Limit Comparison Test). Suppose an, bn > 0 eventually (i.e., ∃ k ∈ N such

that an, bn > 0 ∀ n ≥ k), and an
bn

→ ℓ as n → ∞. Then

(1) If ℓ > 0, then
∑

an is convergent if and only if
∑

bn is convergent.

(2) If ℓ = 0 and
∑

bn converges, then
∑

an also converges.

(3) If ℓ = ∞ and
∑

bn diverges, then
∑

an also diverges.

Examples.

(1)
∑

2n+n
3n−n

converges. If we take bn = (2
3
)n, then an

bn
→ 1.

(2)
∑

sin( 1
n
). Take bn = 1

n
.

(3)
∑

1
(logn)p

is divergent for p > 0. Let bn = 1
n
. Then an

bn
= 1/(log n)p

1/n
= n

(logn)p
→ ∞.

Theorem 3 (Cauchy condensation test). Let an ≥ 0 and an+1 ≤ an. Then
∑∞

n=1 an

converges if and only if
∑∞

k=0 2
ka2k converges.

Examples.

(1)
∑

1
np converges if p > 1 and diverges if p ≤ 1 (Verify).

(2)
∑

1
n(logn)p

converges if p > 1 and diverges if p ≤ 1.

Theorem 4 (Cauchy’s Root Test). (1) If |an|
1/n ≤ α eventually for some α < 1, then

∑
an is absolutely convergent.

(2) If |an|
1/n ≥ 1 for infinitely many n, then

∑
an is divergent.

(3) In particular, if |an|
1/n → ℓ where ℓ ∈ R or ℓ = ∞, then

∑
an is absolutely convergent when ℓ < 1, and it is divergent when ℓ > 1.
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Examples.

(1)
∑

1
(logn)n

converges because a
1/n
n = 1

logn
→ 0.

(2)
∑

( n
n+1

)n
2

converges as a
1/n
n = 1

(1+ 1

n
)n

→ 1
e
< 1.

Theorem 5 (D’Alembert’s Ratio Test). Suppose an 6= 0 for all n.

(1) If |an+1

an
| ≤ α eventually for some α < 1, then

∑
an is absolutely convergent.

(2) If |an+1

an
| ≥ 1 eventually, then

∑
an is divergent.

(3) In particular, if |an+1

an
| → ℓ where ℓ ∈ R or ℓ = ∞, then

∑
an is absolutely convergent when ℓ < 1, and it is divergent when ℓ > 1.

Remark 6. Both Root test and Ratio test are inconclusive if ℓ = 1.

Examples.

(1)
∑

1
n!

converges because an+1

an
→ 0.

(2)
∑

(n
n

n!
)n

2

diverges as an+1

an
= (1 + 1

n
)n → e > 1.

Theorem 7 (Dirichlet’s Test). Let (an) and (bn) be sequences such that (an) is monotonic,

an → 0, and the sequence (Bn) defined by Bn =
∑n

k=1 bk is bounded. Then the series
∑

anbn is convergent.

Corollary 8 (Leibniz Test). Let (an) be a monotonic sequence such that an → 0. Then
∑

(−1)n−1an is convergent.

Examples. For p > 0, both the series
∑ (−1)n−1

np and
∑ (−1)n−1

(logn)p
are convergent.

Rearrangements of a Series

Let
∑

an and a bijection σ : N → N be given. Define bn = aσ(n). Then the new series
∑

bn is said to be a rearrangement of the series
∑

an.

Theorem 9 (Riemann’s Theorem). A conditionally convergent series can be made to

converge to any arbitrary real number or even made to diverge by a suitable rearrangement

of its terms.

The above theorem should convince us the danger of manipulating a series without

paying attention to rigorous analysis. The next theorem tells us when we can manipulate

the terms of the series whichever way we want.

Theorem 10 (Rearrangement of Terms). A series
∑

an is absolutely convergent if and

only if every rearrangement of it is convergent. In this case, the sum of a rearrangement

is unchanged.
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