
SERIES

We know that the set of real numbers is a group under the usual addition. The as-

sociativity of real numbers allows us to add any finite real numbers x1, x2, . . . , xn as

x1 + x2 + · · ·+ xn. In this lecture we will learn whether we can add infinitely many real

numbers. In other words, if (xn) is a sequence, then what is the meaning of the symbol
∑

∞

n=1
xn = x1 + x2 + · · ·+ xn + · · · . Such expression is called an infinite series, or just s

series. What will happen if we try to add them term by term. For example, consider the

sequence, xn = (−1)n−1. Then

1− 1 + 1− 1 + · · · = (1− 1) + (1− 1) + · · ·

= 0 + 0 + · · ·+ 0 + · · ·

= 0,

1− 1 + 1− 1 + · · · = 1 + (−1 + 1) + (−1 + 1) + · · ·

= 1 + 0 + 0 + · · ·+ 0 + · · ·

= 1.

This absurdity shows that we should define the sum of infinite real numbers in a rigorous

way so as to avoid this. In your school days, you have learned the geometric series

1 + 1

2
+ 1

22
+ · · ·+ 1

2n
+ · · · = 2. What do we mean by this?

Convergence and Sum of an Infinite Series

Definition 1. Let (xn) be a sequence of real numbers. Define the sequence

Sn = x1 + x2 + · · ·+ xn.

Then (Sn) is called the sequence of (n-th) partial sum of the series
∑

∞

n=1
xn.

We say that the infinite series
∑

∞

n=1
xn is convergent if the sequence (Sn) of partial

sums is convergent.

The limit of (Sn), say S, is called the sum of the series. We denote this fact by the

symbol
∑

∞

n=1
xn = S.

We say that the series
∑

∞

n=1
xn is divergent if the sequence of its partial sums is

divergent.

The series
∑

∞

n=1
xn is said to be absolutely convergent if the infinite series

∑

∞

n=1
|xn|

is convergent.
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If a series is convergent but not absolutely convergent, then it is said to be condition-

ally convergent.

You need to remember the following remark by heart.

Remark 2. The ONLY way to deal with an infinite series is through its sequence partial

sums and by using the definition of the sum of an infinite series.

You need to be careful when dealing with infinite series. Mindless algebraic manipula-

tions may lead to absurdities as shown in the beginning of this lecture.

Examples.

(1) (Geometric Series) Let x ∈ R such that |x| < 1. Consider the series
∑

∞

n=0
xn.

The sequence of partial sums is

Sn = 1 + x+ x2 + · · ·+ xn =
1− xn+1

1− x
.

Since |x| < 1, we have xn+1 → 0, and therefore, Sn → 1

1−x
. Thus,

∑

∞

n=0
xn = 1

1−x

if |x| > 1.

(2) The series
∑

∞

n=0
log(n+1

n
) diverges because Sn = log(n+ 1) diverges.

(3) (Telescoping Series) Let (xn) and (yn) be two sequences such that xn = yn+1 −

yn. If Sn is the sequence of partial sums of
∑

∞

n=0
xn, then

Sn = x1 + x2 + · · ·+ xn = (y2 − y1) + (y3 − y2) + · · ·+ (yn+1 − yn) = yn+1 − y1.

This implies that
∑

∞

n=0
xn converges if and only if the sequence (yn) converges. In

this case,
∑

∞

n=0
xn = limn→∞ yn − y1.

(4) Consider
∑

∞

n=0

n

n4+n2+1
. Observe that xn = n

n4+n2+1
= 1

2

[

1

n2
−n+1

− 1

n2+n+1

]

=

1

2
(yn − yn+1), where yn = 1

2

(

1

n2
−n+1

)

. Hence, Sn = 1

2
−
(

1

n2
−n+1

)

→ 1

2
.

Necessary condition for convergence

Theorem 3 (The nth Term Test). If
∑

∞

n=0
xn converges, then xn → 0.

Proof. Let
∑

∞

n=0
xn = S. Then Sn+1 − Sn = xn+1 → S − S = 0. �

Examples.

(1) If |x| ≥ 1, the the geometric series
∑

∞

n=0
xn diverges because xn

9 0.

(2)
∑

∞

n=0
sinn diverges because sinn 9 0.

(3)
∑

∞

n=0
log(n+1

n
) diverges, however, log(n+1

n
) → 0.
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Necessary and sufficient condition for convergence

Theorem 4. Suppose xn ≥ 0 for all n. Then
∑

∞

n=0
xn converges iff (Sn) is bounded

above.

Proof. Exercise. �

Example. The Harmonic series
∑

∞

n=0

1

n
diverges. To see this, we will show that the

sequence of partial sums (Sn) is not bounded above. It is enough to show that the

subsequence S2k is not bounded above (Why?). Observe that

S1 = 1

S2 = 1 +
1

2

S22 = 1 +
1

2
+

(

1

3
+

1

4

)

> 1 +
1

2
+

(

1

4
+

1

4

)

= 1 +
1

2
+ 2 ·

1

4
= 1 + 2 ·

1

2

S23 = 1 +
1

2
+

(

1

3
+

1

4

)

+

(

1

5
+

1

6
+

1

7
+

1

8

)

> 1 +
1

2
+ 2 ·

1

4
+ 22 ·

1

23
= 1 + 3 ·

1

2
.

This implies that

S2k > 1 + k ·
1

2
.

Thus, (Sn) is not bounded above, and hence the series
∑

∞

n=0

1

n
diverges.

Let’s see another proof. Assume that (Sn) is convergent. Then (Sn) is Cauchy. It

follows that for ε = 1

2
, there exists N ∈ N such that |S2m − Sm| <

1

2
for all m ≥ N . But

|S2m − Sm| =
1

m+ 1
+

1

m+ 2
+ · · ·+

1

2m
>

1

2m
+

1

2m
+ · · ·+

1

2m
>

1

2
.

This is a contradiction. Hence, (Sn) cannot converge.

Algebra of Convergent Series

Given two series (whether or not convergent)
∑

∞

n=1
xn and

∑

∞

n=1
yn, and a scalar α ∈ R,

we define
∞
∑

n=1

xn +

∞
∑

n=1

yn =

∞
∑

n=1

(xn + yn) and α

∞
∑

n=1

xn =

∞
∑

n=1

(αxn).

The following theorem shows that the set of all convergent series is a vector space over

R. The proof is straightforward and you should go for it.

Theorem 5. Let
∑

∞

n=1
xn = x and

∑

∞

n=1
yn = y. Then
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(1) Their sum
∑

∞

n=1
(xn + yn) is convergent and

∑

∞

n=1
(xn + yn) = x+ y.

(2) The series α
∑

∞

n=1
xn is convergent and α

∑

∞

n=1
xn = αx.

We now give an important result about absolutely convergent series.

Theorem 6. An absolutely convergent series is convergent.

Proof. Let Sn and Γn denote the partial sums of
∑

∞

n=1
xn and

∑

∞

n=1
|xn| respectively. For

n > m, we have

|Sn − Sm| = |

n
∑

k=m+1

xk| ≤

n
∑

k=m+1

|xk| = Γn − Γm,

which converge to 0 as (Γn) is convergent. Therefore, (Sn) is Cauchy. �

We will see later that the converse of the above result does not hold.
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