
TAYLOR’S THEOREM

Taylor Polynomials

Sometimes we can approximate complicated functions with simpler ones that give the

accuracy we want for specific applications and are easier to work with. The approximating

functions discussed here are called linearizations, and they are based on tangent lines.

Other approximating functions, such as polynomials will be discussed afterwards.

Consider the function f(x) = x2. The tangent to the curve y = x2 at (1, 1) is y = 2x−1.

If we plot the graph of the curve and its tangent, we can see that the tangent line lies close

to the curve near the point of tangency. If we zoom the graph of f near (1, 1), the graph

becomes flatter and it almost resembles its tangent. Thus, for a small interval around the

point 1 on x-axis, the y-values along the tangent line gives a good approximations to the

y-values on the curve.

In general, the tangent to y = f(x) at a point c, where f is differentiable, is the line

L(x) = f(c) + f ′(c)(x− c).

As long as this line remains close to the graph of f , L(x) provides a good approximation

to f(x). The approximating function L(x) is called the linearization of f at c. This is the

standard linear approximation of f at c, and the point c is the center of the approximation.

Note that the linearization L(x) of f at c is a polynomial of degree one. The question

here is that can we get a better approximation if we take a polynomial of higher degree.

The answer is yes and this is what Taylor’s theorem talks about1.

Definition 1. Let f : [a, b] → R be a function which is n-times differentiable at c ∈ (a, b).

The Taylor polynomial of order n generated by f at c is the polynomial

Pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 + · · ·+

f (n)(c)

n!
(x− c)n.

Example 2. Find the Taylor polynomial generated by f(x) = ex at c = 0.

Solution. Since f (n)(x) = ex and f (n)(0) = 1 for every n, the Taylor polynomial of

order n at c = 0 is

Pn(x) = 1 + x+
x2

2!
+ · · ·+

xn

n!
.

1Taylor’s theorem is named after the English mathematician Brook Taylor. He also introduced Taylor

series which will be discussed later. Both Taylor’s theorem and Taylor series are among the most useful

results in calculus.
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Taylor’s Theorem

Theorem 3. Assume that f : [a, b] → R is such that f (n) is continuous on [a, b] and

f (n+1)(x) exists on (a, b). Fix x0 ∈ [a, b]. Then for each x ∈ [a, b] with x 6= x0, there exists

c between x and x0 such that

f(x) = f(x0) + f ′(x0)(x− x0) + · · ·+
f (n)(x0)

n!
(x− x0)

n +
f (n+1)(c)

(n+ 1)!
(x− x0)

n+1. (⋆)

Remark 4. (1) Note that the MVT corresponds to the case n = 0 of Taylor’s Theo-

rem. The case n = 1 is sometimes called the Extended Mean Value Theorem. In

both cases we take x0 = a and x = b.

(2) The right-hand side of Equation (⋆) is called the n-th order Taylor expansion (or

formula) for f around x0.

(3) The term Rn(x) =
f(n+1)(c)
(n+1)!

(x− x0)
n+1 is called the remainder term of order n. It

is known as Lagrange’s form of remainder in Taylor’s formula.

(4) Usually, the n-th order Taylor polynomial Pn(x) of f around x0 provides a pro-

gressively better approximation to f around x0 as n increases. The remainder

term is the “error term” if we wish to approximate f near x0 by Pn(x). If we

assume that f (n+1) is bounded by M on (a, b), then Rn goes to 0 much faster than

(x− x0)
n → 0, since

∣

∣

∣

Rn(x)
(x−x0)n

∣

∣

∣
≤ M

(n+1)!
|x− x0|.

Corollary 5. Let f : [a, b] → R and n be a nonnegative integer. Then f is a polynomial

function of degree ≤ n iff f (n+1) exists and is identically zero on [a, b].

Proof. Exercise. �

Example 6. Using Taylor’s theorem show that for any k ∈ N and for all x > 0,

x−
1

2
x2 + · · ·+

1

2k
x2k < log(1 + x) < x−

1

2
x2 + · · ·+

1

2k + 1
x2k+1.

Solution. By Taylor’s theorem, there exists c ∈ (0, x) such that

log(1 + x) = x−
1

2
x2 + · · ·+

(−1)n−1

n
xn +

(−1)n

n + 1

1

(1 + c)n+1
xn.

We observe that for any x > 0,

(−1)n

n+ 1

1

(1 + c)n+1
xn =











> 0 if n = 2k

< 0 if n = 2k + 1.

Problem 7. Let x0 ∈ (a, b) and n ≥ 2. Suppose f ′, f”, . . . , f (n) are continuous on (a, b)

and f ′(x0) = · · · = f (n−1)(x0) = 0. Show that if n is even and f (n)(x0) > 0, then f has

a local minimum at x0. Similarly, if n is even and f (n)(x0) < 0, show that f has a local

maximum at x0.
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Solution. Suppose that f (n)(x0) > 0 and n is even. Since f (n) is continuous at x0, there

exists a neighbourhood U of x0 such that f (n)(x) > 0 for all x ∈ U . By Taylor’s theorem,

for x ∈ U , there exists c between x and x0 such that f(x) = f(x0) +
f(n)(c)

n!
(x − x0)

n. It

follows that f(n)(c)
n!

(x− x0)
n > 0 (∵ c ∈ U and n is even). This implies that f(x) > f(x0)

for all x ∈ U . Hence, x0 is a local minimum.
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