LOCAL EXTREMA AND POINTS OF INFLECTION

In lecture 8, we have seen a necessary condition for local maximum and local minimum.
In this lecture we will see some sufficient conditions.

In the following results we assume f : (a,b) — R and ¢ € (a,b).

1. SUFFICIENT CONDITIONS FOR A LOCAL EXTREMUM

We will state results for local maximum, and results for local minimum are similar.

Theorem 1. Let [ be continuous at c. If for some 6 > 0, f is increasing on (c — 6, c)

and decreasing on (c,c+ ), then f has a local maximum at c.

Proof. Choose = and y such that ¢ — 0 < x <y < ¢. Then f(z) < f(y). The continuity
of f at c¢ implies that f(z) < lim, .- f(y) = f(c). Similarly, if ¢ < y < z < ¢+ 4, then
f(x) <lim, .+ f(y) = f(c). This proves the result. O

Corollary 2. (1) (First Derivative Test for Local Maximum) Let f be con-

tinuous at c. If for some § > 0
f(x) >0V ze(c—06,c) and f'(x) <OV z € (¢,c+ ),

then f has a local mazimum at c.
(2) (Second Derivative Test for Local Maximum) If f is twice differentiable

at ¢ and satisfies f'(c) =0 and f"(c) <0, then f has a local mazimum at c.

Remark 3. An easy way to remember the First Derivative Test (for local minimum and
local mazimum) is as follows:
f' changes from — to + at ¢ = f has a local minimum at c,

f' changes from + to — at ¢ = [ has a local mazimum at c.

Examples

(1) Let f : R — R be defined as f(z) =
Thus, f'(z) = 0 when # = —1,0, 1. Now, consider the following table,

We have f/(z) = —zle_)@tl)

1
x4 —22247" (z1—222+7)2

Interval | (—o0,~1) (~1,0) (0,1) (1,00)
Sign of f’

+ - + -

So, we conclude that f has a local minimum at x = 0 and a local maxima at

r=—1and z = 1.
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(2) Consider f:(—1,1) — R defined by

2 if0< |z <1,
fz) =

-1, ifx=0.
We note the conditions of the first derivative test is not satisfied. In fact, f is
differentiable on (—1,0) and (0,1) and f’ changes sign from — to + at x = 0 but f
is not continuous at x = 0. Nevertheless, f(0) < f(z) for all nonzero z € (—1,1),
and thus f has a strict local minimum at z = 0.

(3) If f : R — R is defined as f(z) = z*. Then f(0) = 0 < f(z) for all nonzero

xz € R). Therefore, f has a strict local minimum at z = 0. Note that f'(0) = 0,
but f”(0) is not positive.

2. CONVEX SETS AND CONVEX FUNCTIONS

Let V' be a vector space over R.

Definition 4. A set C C V is said to be convex if the line segment between any two
points in C lies in C, i.e.,

if for any x,y € C' and any t € [0, 1], we have tx + (1 —t)y € C.

Example. It is clear that the unit disc is convex in R%2. However, the unit circle is not

convex. Any interval in R is a convex set.

Definition 5. Let C' C V be a convex set. A function f : C' — R s said to be convex if

for all z,y € C and for all t € [0,1], we have

flz+ (1 —t)y) <if(x)+ (1 —=6)f(y). (x)

If fort € (0,1), the above inequality is strict, the f is said strictly convex.
We say that f is concave if the reverse inequality in (ED holds.

Theorem 6 (Derivative Test for Convexity). Assume that f : [a,b] is differentiable on
(a,b). If " is increasing on (a,b), then f is convex on |a,b|. In particular, if f" exists

and non-negative on (a,b), then f is conver.

Example. Let f(z) = 23 —62?+92. We have f/(z) = 3(z—1)(x—3) and f"(x) = 6x—12.
We see that f”(z) > 0if x > 2 and f”(x) < 0if < 2. Hence, f is convex for z > 2 and
concave for x < 2.

Examples of convex functions

e ¢” is strictly convex on R.

e xlogx is strictly convex on (0, c0).
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o f(x) =% is strictly convex but f”(0) =0
The following result is one of the reasons why convex functions are very useful in

applications especially in optimization problems.

Theorem 7. If f : (a,b) — is conver and ¢ € (a,b) is a local minimum, then c is a

minimum for f on (a,b). That is, local minima of convex functions are global minima.

3. POINTS OF INFLECTION

Definition 8. Let f : (a,b) — R be a function and ¢ € (a,b). The point ¢ is said to be a
point of inflection for f if there is § > 0 such that f is convex in (¢ — 0,c), while f is
concave in (¢,c+ 0), or vice versa, that is, f is concave in (¢ — 9§, c), while f is convex in

(c,c+0).
Examples For the function f(z) = 23 on R, 0 is a point of inflection.

Theorem 9. Let f: (a,b) — R be a function and ¢ € (a,b).
(1) [Necessary Condition for a Point of Inflection] Let f be twice differen-
tiable at c. If ¢ is a point of inflection for f, then f"(c) = 0.
(2) [Sufficient Condition for a Point of Inflection] Let f be thrice differen-
tiable at c. If f"(c) =0 and f"(c) # 0, then c is a point of inflection for f.

Examples

e For the function f(z) = z*, 0 is not a point of inflection, though, f”(0) = 0.
e For the function f(z) = z°, 0 is a point of inflection, but f”(0) = 0.

Problem 10. Sketch the graph of the function f(z) = x%“_l after finding the intervals of
decrease/increase, intervals of concavity/convezity, points of local minima/local mazima,

points of inflection and asymptotes.

Solution. We note that

8z ) 22% (2% — 12) " 162 (2* 4 12)
f(@zQ%er, f(x):wandf (w)zw
Verify that x = 2, x = —2 and y = 2z are the asymptotes. Moreover, the function is

increasing on (—oo, —2v/3) and (2v/3,00). The function is decreasing on (—2v/3, —2),
(—2,2) and (2,2v/3). Furthermore, the function is convex on (—2,0) and (2,00) and
concave on (—oo,—2) and (0,2). The point of inflection is 0. The sketch of the graph is

shown below.
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