LOCAL EXTREMA AND POINTS OF INFLECTION

In lecture 8, we have seen a necessary condition for local maximum and local minimum. In this lecture we will see some sufficient conditions.

In the following results we assume $f:(a, b) \rightarrow \mathbb{R}$ and $c \in(a, b)$.

1. Sufficient conditions for a local extremum

We will state results for local maximum, and results for local minimum are similar.

Theorem 1. Let f be continuous at c. If for some $\delta>0, f$ is increasing on $(c-\delta, c)$ and decreasing on $(c, c+\delta)$, then f has a local maximum at c.

Proof. Choose x and y such that $c-\delta<x<y<c$. Then $f(x) \leq f(y)$. The continuity of f at c implies that $f(x) \leq \lim _{y \rightarrow c^{-}} f(y)=f(c)$. Similarly, if $c<y<x<c+\delta$, then $f(x) \leq \lim _{y \rightarrow c^{+}} f(y)=f(c)$. This proves the result.

Corollary 2. (1) (First Derivative Test for Local Maximum) Let f be continuous at c. If for some $\delta>0$

$$
f^{\prime}(x) \geq 0 \forall x \in(c-\delta, c) \text { and } f^{\prime}(x) \leq 0 \forall x \in(c, c+\delta),
$$

then f has a local maximum at c.
(2) (Second Derivative Test for Local Maximum) If f is twice differentiable at c and satisfies $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a local maximum at c.

Remark 3. An easy way to remember the First Derivative Test (for local minimum and local maximum) is as follows:
f^{\prime} changes from - to + at $c \Rightarrow f$ has a local minimum at c,
f^{\prime} changes from + to - at $c \Rightarrow f$ has a local maximum at c.

Examples

(1) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as $f(x)=\frac{1}{x^{4}-2 x^{2}+7}$. We have $f^{\prime}(x)=\frac{-4 x(x-1)(x+1)}{\left(x^{4}-2 x^{2}+7\right)^{2}}$. Thus, $f^{\prime}(x)=0$ when $x=-1,0,1$. Now, consider the following table,

Interval	$(-\infty,-1)$	$(-1,0)$	$(0,1)$	$(1, \infty)$
Sign of f^{\prime}	+	-	+	-

So, we conclude that f has a local minimum at $x=0$ and a local maxima at $x=-1$ and $x=1$.
(2) Consider $f:(-1,1) \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}x^{2} & \text { if } 0<|x|<1 \\ -1, & \text { if } x=0\end{cases}
$$

We note the conditions of the first derivative test is not satisfied. In fact, f is differentiable on $(-1,0)$ and $(0,1)$ and f^{\prime} changes sign from - to + at $x=0$ but f is not continuous at $x=0$. Nevertheless, $f(0)<f(x)$ for all nonzero $x \in(-1,1)$, and thus f has a strict local minimum at $x=0$.
(3) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined as $f(x)=x^{4}$. Then $f(0)=0<f(x)$ for all nonzero $x \in \mathbb{R})$. Therefore, f has a strict local minimum at $x=0$. Note that $f^{\prime}(0)=0$, but $f^{\prime \prime}(0)$ is not positive.

2. Convex Sets and Convex Functions

Let V be a vector space over \mathbb{R}.
Definition 4. A set $C \subseteq V$ is said to be convex if the line segment between any two points in C lies in C, i.e.,
if for any $x, y \in C$ and any $t \in[0,1]$, we have $t x+(1-t) y \in C$.
Example. It is clear that the unit disc is convex in \mathbb{R}^{2}. However, the unit circle is not convex. Any interval in \mathbb{R} is a convex set.

Definition 5. Let $C \subseteq V$ be a convex set. A function $f: C \rightarrow \mathbb{R}$ is said to be convex if for all $x, y \in C$ and for all $t \in[0,1]$, we have

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)
$$

If for $t \in(0,1)$, the above inequality is strict, the f is said strictly convex.
We say that f is concave if the reverse inequality in (\star) holds.

Theorem 6 (Derivative Test for Convexity). Assume that $f:[a, b]$ is differentiable on (a, b). If f^{\prime} is increasing on (a, b), then f is convex on $[a, b]$. In particular, if $f^{\prime \prime}$ exists and non-negative on (a, b), then f is convex.

Example. Let $f(x)=x^{3}-6 x^{2}+9 x$. We have $f^{\prime}(x)=3(x-1)(x-3)$ and $f^{\prime \prime}(x)=6 x-12$. We see that $f^{\prime \prime}(x)>0$ if $x>2$ and $f^{\prime \prime}(x)<0$ if $x<2$. Hence, f is convex for $x>2$ and concave for $x<2$.

Examples of convex functions

- e^{x} is strictly convex on \mathbb{R}.
- $x \log x$ is strictly convex on $(0, \infty)$.
- $f(x)=x^{4}$ is strictly convex but $f^{\prime \prime}(0)=0$

The following result is one of the reasons why convex functions are very useful in applications especially in optimization problems.

Theorem 7. If $f:(a, b) \rightarrow$ is convex and $c \in(a, b)$ is a local minimum, then c is a minimum for f on (a, b). That is, local minima of convex functions are global minima.

3. Points of Inflection

Definition 8. Let $f:(a, b) \rightarrow \mathbb{R}$ be a function and $c \in(a, b)$. The point c is said to be a point of inflection for f if there is $\delta>0$ such that f is convex in $(c-\delta, c)$, while f is concave in $(c, c+\delta)$, or vice versa, that is, f is concave in $(c-\delta, c)$, while f is convex in $(c, c+\delta)$.

Examples For the function $f(x)=x^{3}$ on $\mathbb{R}, 0$ is a point of inflection.
Theorem 9. Let $f:(a, b) \rightarrow \mathbb{R}$ be a function and $c \in(a, b)$.
(1) [Necessary Condition for a Point of Inflection] Let f be twice differentiable at c. If c is a point of inflection for f, then $f^{\prime \prime}(c)=0$.
(2) [Sufficient Condition for a Point of Inflection] Let f be thrice differentiable at c. If $f^{\prime \prime}(c)=0$ and $f^{\prime \prime \prime}(c) \neq 0$, then c is a point of inflection for f.

Examples

- For the function $f(x)=x^{4}, 0$ is not a point of inflection, though, $f^{\prime \prime}(0)=0$.
- For the function $f(x)=x^{5}, 0$ is a point of inflection, but $f^{\prime \prime \prime}(0)=0$.

Problem 10. Sketch the graph of the function $f(x)=\frac{2 x^{3}}{x^{2}-4}$ after finding the intervals of decrease/increase, intervals of concavity/convexity, points of local minima/local maxima, points of inflection and asymptotes.

Solution. We note that

$$
f(x)=2 x+\frac{8 x}{x^{2}-4}, f^{\prime}(x)=\frac{2 x^{2}\left(x^{2}-12\right)}{\left(x^{2}-4\right)^{2}} \text { and } f^{\prime \prime}(x)=\frac{16 x\left(x^{2}+12\right)}{\left(x^{2}-4\right)^{3}} .
$$

Verify that $x=2, x=-2$ and $y=2 x$ are the asymptotes. Moreover, the function is increasing on $(-\infty,-2 \sqrt{3})$ and $(2 \sqrt{3}, \infty)$. The function is decreasing on $(-2 \sqrt{3},-2)$, $(-2,2)$ and $(2,2 \sqrt{3})$. Furthermore, the function is convex on $(-2,0)$ and $(2, \infty)$ and concave on $(-\infty,-2)$ and $(0,2)$. The point of inflection is 0 . The sketch of the graph is shown below.

