UNIVARIATE AND MULTIVARIATE CALCULUS - ASSESSMENT I IFE

Question.

Let ℓ be a lower bound of a set A. Show that $\inf A = \ell$ if and only if there exists a sequence (a_n) in A such that $x_n \to \ell$.

Solution. (\Longrightarrow) For $\epsilon = \frac{1}{n}$, there exist $x_n \in A$ such that $x_n < \ell + \frac{1}{n}$, i.e., $\ell \le x_n < \ell + \frac{1}{n}$. By Sandwich theorem, $x_n \to \ell$. [2]

This implies that $a_N < \ell + \varepsilon$. We note that $a_N \in A$. Therefore, $\inf A = \ell$. [2]