UNIVARIATE AND MULTIVARIATE CALCULUS - ASSESSMENT I IFE

Question.

Let ℓ be a lower bound of a set A. Show that $\inf A=\ell$ if and only if there exists a sequence $\left(a_{n}\right)$ in A such that $x_{n} \rightarrow \ell$.

Solution. (\Longrightarrow) For $\epsilon=\frac{1}{n}$, there exist $x_{n} \in A$ such that $x_{n}<\ell+\frac{1}{n}$, i.e., $\ell \leq x_{n}<\ell+\frac{1}{n}$. By Sandwich theorem, $x_{n} \rightarrow \ell$.
\Longleftarrow Let $\varepsilon>0$. As $a_{n} \rightarrow \ell, \exists N \in \mathbb{N}$ such that $\left|a_{n}-\ell\right|<\varepsilon \forall n \geq N$.
This implies that $a_{N}<\ell+\varepsilon$. We note that $a_{N} \in A$. Therefore, $\inf A=\ell$.

