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Abstract. We prove that if the group of isometries on C0(Ω,X) is algebraically re-
flexive, then the set of isometries of order n on C0(Ω,X) is also algebraically reflexive.
Here, Ω is a first countable locally compact Hausdorff space, and X is a Banach space hav-
ing the strong Banach–Stone property. As a corollary, we establish the algebraic reflexivity
of the set of generalized bi-circular projections on C0(Ω,X).

1. Introduction. Reflexivity and hyperreflexivity explore the relation
between sets of operators and their common invariant subspaces. The first
results on reflexivity were proved by D. Sarason [21]. The notion of reflexivity
was introduced by Halmos [8] for lattices of closed subspaces of a Hilbert
space H. If A is a subset of B(H), then LatA denotes the set of all subspaces
invariant under every operator in A. If L is a collection of closed subspaces
of H, then AlgL denotes the algebra of all operators which leave every
subspace in L invariant. A lattice L is reflexive if L = LatAlgL. Reflexivity
for algebras was introduced by Radjavi and Rosenthal [18]. An algebra A is
called reflexive if A = Alg LatA.

Loginov and Šul′man [15] extended this notion to linear subspaces ofB(H).
For any subspace S of B(H), define
(1.1) Ref S = {T ∈ B(H) : Th ∈ Sh, ∀h ∈ H}.
Ref S is called the attached space for S or the topological closure of S. The
subspace S is called reflexive (or topologically reflexive) if S = Ref S.

Throughout this paper, let X be a Banach space and B(X) the algebra of
all bounded linear operators onX. One can see that in (1.1), the assumptions
that the underlying space is a Hilbert space and S is a linear subspace are
not essential. We can define the topological closure for an arbitrary subset
S of B(X).
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If A is an algebra that contains the identity, then LatA is determined
by the closed cyclic subspaces of A, so Alg LatA = Ref A. Thus, the two
definitions coincide for unital algebras.

The notion of algebraic reflexivity has appeared in various contexts. The
term was coined by Hadwin [7]. Let V be a vector space over a field F, and let
L(V ) denote the algebra of all linear transformations on V . For a subspace
S of L(V ) define

Sa = {T ∈ L(V ) : Tx ∈ Sx, ∀x ∈ V }.
So, T ∈ Sa if and only if for each x ∈ V , there exists S ∈ S, depending
on x, such that Tx = Sx. We say that T interpolates S or T is locally in S.
Obviously, S ⊆ Sa. The subspace S is called algebraically reflexive if S = Sa.

Obviously, any topologically reflexive subspace is algebraically reflexive.
Algebraic reflexivity in general and on certain classes of transformations

were studied by many authors: see for instance [4, 5, 7, 12, 14, 17, 19, 20].
The lecture notes by Molnár [16] give a very comprehensive account of this
theory.

An important class of transformations in B(X) is the group of surjective
linear isometries, denoted by G(X). We denote by Gn(X) the set of operators
T in G(X) such that Tn = I, called isometries of order n. An operator
T ∈ G(X)

a
is called a local isometry.

The isometry group of any finite-dimensional Banach space is algebraically
reflexive. Every Banach space admits a renorming whose isometry group is
algebraically reflexive [11]. The isometry group of any infinite-dimensional
Hilbert space fails to be algebraically reflexive. Indeed, given x, y ∈ H such
that ‖x‖ = ‖y‖, there exists T ∈ G(H) such that T (x) = y. So, G(H)a

contains all into isometries.
For a somewhat nontrivial but easy example, one can look at `∞ in B(`2).

We know that B(`2) contains an isometric copy of `∞. We shall see later that
`∞ is algebraically reflexive.

In [5], Dutta and Rao proved that for a compact Hausdorff space Ω, if
G(C(Ω)) is algebraically reflexive, then so is G2(C(Ω)). Motivated by this
result, in this paper we investigate the algebraic reflexivity of isometries of
order n on C0(Ω,X), the space of X-valued continuous functions on a first
countable locally compact Hausdorff space Ω vanishing at infinity.

A projection P ∈ B(X) is said to be a generalized bi-circular projection
if P + λ(I − P ) ∈ G(X), where λ is a unit modulus complex number not
equal to 1. This class was introduced by Fošner, Ilišević and Li [6] in 2007.
Descriptions of generalized bi-circular projections for various Banach spaces
can be found in [1, 3, 10, 13]. As a corollary to our result, we establish
the algebraic reflexivity of the set of generalized bi-circular projections on
C0(Ω,X), which answers a question raised by Dutta and Rao [5].
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2. Preliminaries. The study of isometries between Banach spaces is
one of the most important research areas in functional analysis. One of the
most classical results in this area is the Banach–Stone theorem describing
surjective linear isometries between Banach spaces of complex-valued con-
tinuous functions on compact Hausdorff spaces.

While investigating reflexivity problems for the isometry group of a Ba-
nach space X, firstly we observe that any local isometry on X is actually
an isometry. In particular, if T ∈ G(X)

a
, then for any x ∈ X, there exists

Tx ∈ G(X) such that T (x) = Tx(x). Hence ‖T (x)‖ = ‖Tx(x)‖ = ‖x‖. So, in
order to show that G(X) is algebraically reflexive, we need to prove that any
local isometry is surjective. But this is not as easy as it seems. Secondly, since
we have a precise description of surjective isometries for most of the classical
Banach spaces, one has a good idea of what any local isometry looks like.

For the sake of completeness we recall the Banach–Stone theorem and
some other definitions from [9, Chapter I] which are needed for the vector-
valued version.

Theorem 2.1 ([2, Theorem 7.1]). Let Ω be a locally compact Hausdorff
space. If T : C0(Ω) → C0(Ω) is a surjective isometry, then there exist a
homeomorphism φ : Ω → Ω and a continuous map u : Ω → T such that

Tf(ω) = u(ω)f(φ(ω)), ∀ f ∈ C0(Ω), ω ∈ Ω.
Here, T denotes the unit circle in the complex plane.

Definition 2.2. Let T ∈ B(X).

(1) The operator T is called a multiplier of X if for every element p ∈
ext(BX∗), there exists aT (p) ∈ C such that T ∗p = aT (p)p. The collection
of all multipliers is denoted by Mult(X). Here, ext(BX∗) denotes the set of
extreme points of BX∗ .

(2) The centralizer of X is defined as

Z(X) = {T ∈ Mult(X) : ∃T ∈ Mult(X) ∀ p ∈ ext(BX∗), aT (p) = aT (p)}.
Definition 2.3. A Banach space X is said to have trivial centralizer if

the dimension of Z(X) is 1, that is, the only elements in the centralizer are
scalar multiples of the identity operator I. This is obviously true if X is the
scalar field.

Theorem 2.4 ([2, Theorem 8.10]). Let Ω be a locally compact Haus-
dorff space, and let X be a Banach space with trivial centralizer. If T :
C0(Ω,X) → C0(Ω,X) is a surjective isometry, then there exist a homeo-
morphism φ : Ω → Ω and a map u : Ω → G(X), continuous with respect to
the strong operator topology of B(X), such that

Tf(ω) = uω(f(φ(ω))), ∀ f ∈ C0(Ω,X), ω ∈ Ω.
For simplicity, we denote u(ω) by uω.
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Definition 2.5 ([2, Definition 8.2]). A Banach space X is said to have
the strong Banach–Stone property if it satisfies the conditions in Theorem 2.4.

It is known that strictly convex spaces have trivial centralizer. In partic-
ular, they have the strong Banach–Stone property.

Before we proceed let us see that `∞ is algebraically reflexive in B(`2).
Let T ∈ `a∞. Then, for each f ∈ `2 we have Tf(j) = φf (j)f(j) for some

φf ∈ `∞. Hence, for the standard unit vectors ej in `2,

Tej(k) = φej (k)ej(k) =

{
φej (j) for j = k,

0 for j 6= k.

This implies that Tej = φej (j)ej . Now, for f ∈ `2 we have

Tf = T
( ∞∑
j=1

f(j)ej

)
=
∞∑
j=1

f(j)φej (j)ej = fφ,

where φ = (φej (j)). As T is a bounded linear operator, φ ∈ `∞. Therefore,
T ∈ `∞.

We can actually show that `∞ is topologically reflexive.
The following lemma will be useful later.

Lemma 2.6. Let T ∈ G(C0(Ω,X)). Then T is an isometry of order n if
and only if there exist a homeomorphism φ of Ω and a map u : Ω → G(X)
satisfying

uω ◦ uφ(ω) ◦ · · · ◦ uφn−1(ω) = I, φn(ω) = ω, ∀ω ∈ Ω,
where I denotes the identity map on X and T is given by

Tf(ω) = uω(f(φ(ω))), ∀ f ∈ C0(Ω,X), ω ∈ Ω.
Proof. Since T ∈ G(C0(Ω,X)), there exists a homeomorphism φ : Ω → Ω

and a map u : Ω → G(X) such that

Tf(ω) = uω(f(φ(ω))), ∀ f ∈ C0(Ω,X), ω ∈ Ω.
As T ∈ Gn(C0(Ω,X)) we have Tnf(ω) = f(ω). This shows that

(2.1) uω ◦ uφ(ω) ◦ · · · ◦ uφn−1(ω)(f(φ
n(ω))) = f(ω).

For a fixed x ∈ X and ω ∈ Ω consider the function f = h ⊗ x, where
h ∈ C0(Ω) is such that h(ω) = h(φn(ω)) = 1. Applying (2.1) to f we get

uω ◦ uφ(ω) ◦ · · · ◦ uφn−1(ω)(x) = x.

Since this can be done for each x ∈ X and each ω ∈ Ω, we conclude that

uω ◦ uφ(ω) ◦ · · · ◦ uφn−1(ω) = I.

This also implies that f(φn(ω)) = f(ω) for all f ∈ C0(Ω,X). Hence,
φn(ω) = ω.
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3. Algebraic reflexivity of Gn(C0(Ω,X)). Our main result is the fol-
lowing.

Theorem 3.1. Let Ω be a first countable locally compact Hausdorff space,
and let X be a Banach space which has the strong Banach–Stone property.
If G(C0(Ω,X)) is algebraically reflexive, then Gn(C0(Ω,X)) is algebraically
reflexive.

Proof. Let T ∈ Gn(C0(Ω,X))
a
. Then for each f ∈ C0(Ω,X) we have

Tf(ω) = ufω(f(φf (ω))) where uf : Ω → G(X) is continuous in the strong
operator topology and satisfies

ufω ◦ u
f
φf (ω)

◦ · · · ◦ uf
φn−1
f (ω)

= I,

and φf is a homeomorphism of Ω such that φnf (ω) = ω for all ω ∈ Ω.
In particular T ∈ G(C0(Ω,X))

a
. Hence, there exist a homeomorphism φ :

Ω → Ω and a map u : Ω → G(X) such that

Tf(ω) = uω(f(φ(ω))), ∀ f ∈ C0(Ω,X), ω ∈ Ω.
To show that T ∈ Gn(C0(Ω,X)), we need to prove that Tn = I, that is, by
Lemma 2.6,

uω ◦ uφ(ω) ◦ · · · ◦ uφn−1(ω) = I and φn(ω) = ω, ∀ω ∈ Ω.
Suppose f = h ⊗ x, where h is a strictly positive function in C0(Ω) and
0 6= x ∈ X. Then we have Tf(ω) = ufω(f(φf (ω))) = uω(f(φ(ω))), that is,
ufω(h(φf (ω))x) = uω(h(φ(ω))x). Taking norms on both sides and using the
fact thatufω, uω are isometries, andh is strictly positive, we getufω(x) = uω(x).
Therefore, ufω = uω for all ω ∈ Ω.

Let ω be any point in Ω. We consider the following cases.

Case I: ω = φ(ω). Then

φn(ω) = φ(φ(· · · (φ(ω)) · · · )) (n times) = ω.

We choose h ∈ C0(Ω) such that 0 < h ≤ 1 and h−1{1} = {ω}. For f = h⊗x,
0 6= x ∈ X, evaluating Tf at ω we get

Tf(ω) = uω(f(φ(ω))) = ufω(f(φf (ω)))

=⇒ uω(h(φ(ω))x) = ufω(h(φf (ω))x)

=⇒ uω(x) = ufω(h(φf (ω))x) (as h(φ(ω)) = h(ω) = 1)

=⇒ ‖uω(x)‖ = ‖ufω(h(φf (ω))x)‖
=⇒ h(φf (ω)) = 1 (uω and ufω are isometries)
=⇒ φf (ω) = ω (by the choice of h)

=⇒ φ2f (ω) = · · · = φn−1f (ω) = ω.
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So, we have

I = ufω ◦ u
f
φf (ω)

◦ · · · ◦ uf
φn−1
f (ω)

= ufω ◦ ufω ◦ · · · ◦ ufω
= uω ◦ uω ◦ · · · ◦ uω (as ufω = uω).

Case II: φ(ω) 6= ω, φm(ω) = ω for some m that divides n and φs(ω) 6= ω
for all s < m. As m divides n, there exists a positive integer q such that
n = mq. Therefore,

φn(ω) = φmq(ω) = φm(φm(· · · (φm(ω))) · · · ) (q times) = ω.

We now choose h ∈ C0(Ω) such that 1 ≤ h ≤ m and

h−1{1} = {ω}, h−1{2} = {φ(ω)}, . . . , h−1{m} = {φm−1(ω)}.
Let f = h ⊗ x for 0 6= x ∈ X. Evaluating Tf at ω, φ(ω), . . . , φm−1(ω) and
considering our choice of the function h we get φpf (ω) = φp(ω) for 1 ≤ p ≤ m.

This implies that

φm+1
f (ω) = φf (φ

m
f (ω)) = φf (ω) = φ(ω) = φ(φm(ω)) = φm+1(ω).

Thus, φpf (ω) = φp(ω) for m + 1 ≤ p ≤ n − 1. Since uω = ufω for all ω ∈ Ω,
we have

uω ◦ uφ(ω) ◦ · · · ◦ uφn−1(ω) = ufω ◦ u
f
φf (ω)

◦ · · · ◦ uf
φn−1
f (ω)

= I.

Case III: φ(ω) 6= ω, φm(ω) = ω for some m that does not divide n
and φs(ω) 6= ω for all s < m. Then there exist integers r and q such that
n = mq + r, 0 < r < m. We choose h ∈ C0(Ω) such that 1 ≤ h ≤ m and

h−1{1} = {ω}, h−1{2} = {φ(ω)}, . . . , h−1{m} = {φm−1(ω)}.
By applying Tf at ω, φ(ω), . . . , φm−1(ω) and proceeding as in Case II we get
φpf (ω) = φp(ω) for 1 ≤ p ≤ n− 1. We now see that

Tf(φn−1(ω)) = uφn−1(ω)(f(φ
n(ω))) = uf

φn−1(ω)
(f(φf (φ

n−1(ω))))

=⇒ uφn−1(ω)(h(φ
n(ω))x) = uf

φn−1(ω)
(h(φf (φ

n−1
f (ω)))x)

=⇒ uφn−1(ω)(h(φ
n(ω))x) = uf

φn−1(ω)
(h(φnf (ω))x)

=⇒ uφn−1(ω)(h(φ
n(ω))x) = uf

φn−1(ω)
(h(ω)x) (as φnf (ω) = ω)

=⇒ uφn−1(ω)(h(φ
n(ω))x) = uf

φn−1(ω)
(x) (as h(ω) = 1)

=⇒ ‖uφn−1(ω)(h(φ
n(ω))x)‖ = ‖uf

φn−1(ω)
(x)‖

=⇒ h(φn(ω)) = 1 (uφn−1(ω) and u
f
φn−1(ω)

are isometries)

=⇒ φn(ω) = ω (by the choice of h).
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But our assumption that φm(ω) = ω implies that φmq(ω) = ω. Hence,
ω = φn(ω) = φr+mq(ω) = φr(φmq(ω)) = φr(ω),

a contradiction because r < m.
Case IV: ω, φ(ω), . . . , φn−1(ω) are all distinct. Then choose h ∈ C0(Ω)

such that 1 ≤ h ≤ n and
h−1{1} = {ω}, h−1{2} = {φ(ω)}, . . . , h−1{n} = {φn−1(ω)}.

Proceeding as in Case III we get
φn(ω) = ω and uω ◦ uφ(ω) ◦ · · · ◦ uφn−1(ω) = I.

This completes the proof.
Corollary 3.2. Let Ω be a first countable locally compact Hausdorff

space. Let X be a Banach space which has the strong Banach–Stone property,
and does not have any generalized bi-circular projections. If G(C0(Ω,X)) is
algebraically reflexive, then the set P of generalized bi-circular projections on
C0(Ω,X) is also algebraically reflexive.

Proof. Let P ∈ Pa. Then for each f ∈ C0(Ω,X), there exists Pf ∈ P
such that Pf = Pff . Therefore, by [1, Theorem 4.2] and the assumption
on X, for each f there exists a homeomorphism φf of Ω and uf : Ω → G(X)
satisfying

φ2f (ω) = ω and ufω ◦ u
f
φf (ω)

= I, ∀ω ∈ Ω,

such that
Pf(ω) = 1

2 [f(ω) + ufω(f(φf (ω)))].

Therefore, for each f ∈ C0(Ω,X), we get (2P − I)f(ω) = ufω(f(φf (ω))).
This implies that 2P − I ∈ G2(C0(Ω,X))

a
. The conclusion follows from

Theorem 3.1.
Combining Theorem 3.1 with [12, Theorem 7] we have the following corol-

lary.
Corollary 3.3. Let Ω be a first countable compact Hausdorff space, and

let X be a uniformly convex Banach space such that G(X) is algebraically
reflexive. Then Gn(C(Ω,X)) is algebraically reflexive.
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