COLLOQUIUM MATHEMATICUM

REFLEXIVITY OF ISOMETRIES OF ORDER n

BY
ABDULLAH BIN ABU BAKER (Allahabad)

Dedicated to the memory of Professor Sudipta Dutta

Abstract

We prove that if the group of isometries on $C_{0}(\Omega, X)$ is algebraically reflexive, then the set of isometries of order n on $C_{0}(\Omega, X)$ is also algebraically reflexive. Here, Ω is a first countable locally compact Hausdorff space, and X is a Banach space having the strong Banach-Stone property. As a corollary, we establish the algebraic reflexivity of the set of generalized bi-circular projections on $C_{0}(\Omega, X)$.

1. Introduction. Reflexivity and hyperreflexivity explore the relation between sets of operators and their common invariant subspaces. The first results on reflexivity were proved by D. Sarason [21]. The notion of reflexivity was introduced by Halmos [8] for lattices of closed subspaces of a Hilbert space \mathcal{H}. If \mathcal{A} is a subset of $B(\mathcal{H})$, then Lat \mathcal{A} denotes the set of all subspaces invariant under every operator in \mathcal{A}. If \mathcal{L} is a collection of closed subspaces of \mathcal{H}, then $\operatorname{Alg} \mathcal{L}$ denotes the algebra of all operators which leave every subspace in \mathcal{L} invariant. A lattice \mathcal{L} is reflexive if $\mathcal{L}=\operatorname{Lat} \operatorname{Alg} \mathcal{L}$. Reflexivity for algebras was introduced by Radjavi and Rosenthal [18]. An algebra \mathcal{A} is called reflexive if $\mathcal{A}=\operatorname{Alg}$ Lat \mathcal{A}.

Loginov and Šul'man [15] extended this notion to linear subspaces of $B(\mathcal{H})$. For any subspace \mathcal{S} of $B(\mathcal{H})$, define

$$
\begin{equation*}
\operatorname{Ref} \mathcal{S}=\{T \in B(\mathcal{H}): T h \in \overline{\mathcal{S} h}, \forall h \in \mathcal{H}\} . \tag{1.1}
\end{equation*}
$$

$\operatorname{Ref} \mathcal{S}$ is called the attached space for \mathcal{S} or the topological closure of \mathcal{S}. The subspace \mathcal{S} is called reflexive (or topologically reflexive) if $\mathcal{S}=\operatorname{Ref} \mathcal{S}$.

Throughout this paper, let X be a Banach space and $B(X)$ the algebra of all bounded linear operators on X. One can see that in 1.1 , the assumptions that the underlying space is a Hilbert space and \mathcal{S} is a linear subspace are not essential. We can define the topological closure for an arbitrary subset \mathcal{S} of $B(X)$.

[^0]If \mathcal{A} is an algebra that contains the identity, then Lat \mathcal{A} is determined by the closed cyclic subspaces of \mathcal{A}, so $\operatorname{Alg} \operatorname{Lat} \mathcal{A}=\operatorname{Ref} \mathcal{A}$. Thus, the two definitions coincide for unital algebras.

The notion of algebraic reflexivity has appeared in various contexts. The term was coined by Hadwin [7]. Let V be a vector space over a field \mathbb{F}, and let $\mathcal{L}(V)$ denote the algebra of all linear transformations on V. For a subspace \mathcal{S} of $\mathcal{L}(V)$ define

$$
\overline{\mathcal{S}}^{a}=\{T \in \mathcal{L}(V): T x \in \mathcal{S} x, \forall x \in V\} .
$$

So, $T \in \overline{\mathcal{S}}^{a}$ if and only if for each $x \in V$, there exists $S \in \mathcal{S}$, depending on x, such that $T x=S x$. We say that T interpolates \mathcal{S} or T is locally in \mathcal{S}. Obviously, $\mathcal{S} \subseteq \overline{\mathcal{S}}^{a}$. The subspace \mathcal{S} is called algebraically reflexive if $\mathcal{S}=\overline{\mathcal{S}}^{a}$.

Obviously, any topologically reflexive subspace is algebraically reflexive.
Algebraic reflexivity in general and on certain classes of transformations were studied by many authors: see for instance [4, 5, 7, 12, 14, 17, 19, 20]. The lecture notes by Molnár [16] give a very comprehensive account of this theory.

An important class of transformations in $B(X)$ is the group of surjective linear isometries, denoted by $\mathcal{G}(X)$. We denote by $\mathcal{G}^{n}(X)$ the set of operators T in $\mathcal{G}(X)$ such that $T^{n}=I$, called isometries of order n. An operator $T \in \overline{\mathcal{G}(X)}^{a}$ is called a local isometry.

The isometry group of any finite-dimensional Banach space is algebraically reflexive. Every Banach space admits a renorming whose isometry group is algebraically reflexive [11. The isometry group of any infinite-dimensional Hilbert space fails to be algebraically reflexive. Indeed, given $x, y \in \mathcal{H}$ such that $\|x\|=\|y\|$, there exists $T \in \mathcal{G}(\mathcal{H})$ such that $T(x)=y$. So, $\overline{\mathcal{G}(\mathcal{H})}{ }^{a}$ contains all into isometries.

For a somewhat nontrivial but easy example, one can look at ℓ_{∞} in $B\left(\ell_{2}\right)$. We know that $B\left(\ell_{2}\right)$ contains an isometric copy of ℓ_{∞}. We shall see later that ℓ_{∞} is algebraically reflexive.

In (5), Dutta and Rao proved that for a compact Hausdorff space Ω, if $\mathcal{G}(C(\Omega))$ is algebraically reflexive, then so is $\mathcal{G}^{2}(C(\Omega))$. Motivated by this result, in this paper we investigate the algebraic reflexivity of isometries of order n on $C_{0}(\Omega, X)$, the space of X-valued continuous functions on a first countable locally compact Hausdorff space Ω vanishing at infinity.

A projection $P \in B(X)$ is said to be a generalized bi-circular projection if $P+\lambda(I-P) \in \mathcal{G}(X)$, where λ is a unit modulus complex number not equal to 1. This class was introduced by Fošner, Ilišević and Li [6] in 2007. Descriptions of generalized bi-circular projections for various Banach spaces can be found in [1, 3, 10, 13]. As a corollary to our result, we establish the algebraic reflexivity of the set of generalized bi-circular projections on $C_{0}(\Omega, X)$, which answers a question raised by Dutta and Rao [5].
2. Preliminaries. The study of isometries between Banach spaces is one of the most important research areas in functional analysis. One of the most classical results in this area is the Banach-Stone theorem describing surjective linear isometries between Banach spaces of complex-valued continuous functions on compact Hausdorff spaces.

While investigating reflexivity problems for the isometry group of a Banach space X, firstly we observe that any local isometry on X is actually an isometry. In particular, if $T \in \overline{\mathcal{G}(X)}^{a}$, then for any $x \in X$, there exists $T_{x} \in \mathcal{G}(X)$ such that $T(x)=T_{x}(x)$. Hence $\|T(x)\|=\left\|T_{x}(x)\right\|=\|x\|$. So, in order to show that $\mathcal{G}(X)$ is algebraically reflexive, we need to prove that any local isometry is surjective. But this is not as easy as it seems. Secondly, since we have a precise description of surjective isometries for most of the classical Banach spaces, one has a good idea of what any local isometry looks like.

For the sake of completeness we recall the Banach-Stone theorem and some other definitions from [9, Chapter I] which are needed for the vectorvalued version.

Theorem 2.1 ([2, Theorem 7.1]). Let Ω be a locally compact Hausdorff space. If $T: C_{0}(\Omega) \rightarrow C_{0}(\Omega)$ is a surjective isometry, then there exist a homeomorphism $\phi: \Omega \rightarrow \Omega$ and a continuous map $u: \Omega \rightarrow \mathbb{T}$ such that

$$
T f(\omega)=u(\omega) f(\phi(\omega)), \quad \forall f \in C_{0}(\Omega), \omega \in \Omega
$$

Here, \mathbb{T} denotes the unit circle in the complex plane.
Definition 2.2. Let $T \in B(X)$.
(1) The operator T is called a multiplier of X if for every element $p \in$ $\operatorname{ext}\left(B_{X^{*}}\right)$, there exists $a_{T}(p) \in \mathbb{C}$ such that $T^{*} p=a_{T}(p) p$. The collection of all multipliers is denoted by Mult (X). Here, $\operatorname{ext}\left(B_{X^{*}}\right)$ denotes the set of extreme points of $B_{X^{*}}$.
(2) The centralizer of X is defined as

$$
Z(X)=\left\{T \in \operatorname{Mult}(X): \exists \bar{T} \in \operatorname{Mult}(X) \forall p \in \operatorname{ext}\left(B_{X^{*}}\right), a_{\bar{T}}(p)=\overline{a_{T}(p)}\right\}
$$

Definition 2.3. A Banach space X is said to have trivial centralizer if the dimension of $Z(X)$ is 1 , that is, the only elements in the centralizer are scalar multiples of the identity operator I. This is obviously true if X is the scalar field.

Theorem 2.4 ([2, Theorem 8.10]). Let Ω be a locally compact Hausdorff space, and let X be a Banach space with trivial centralizer. If T : $C_{0}(\Omega, X) \rightarrow C_{0}(\Omega, X)$ is a surjective isometry, then there exist a homeomorphism $\phi: \Omega \rightarrow \Omega$ and a map $u: \Omega \rightarrow \mathcal{G}(X)$, continuous with respect to the strong operator topology of $B(X)$, such that

$$
T f(\omega)=u_{\omega}(f(\phi(\omega))), \quad \forall f \in C_{0}(\Omega, X), \omega \in \Omega
$$

For simplicity, we denote $u(\omega)$ by u_{ω}.

Definition 2.5 ([2, Definition 8.2]). A Banach space X is said to have the strong Banach-Stone property if it satisfies the conditions in Theorem 2.4

It is known that strictly convex spaces have trivial centralizer. In particular, they have the strong Banach-Stone property.

Before we proceed let us see that ℓ_{∞} is algebraically reflexive in $B\left(\ell_{2}\right)$.
Let $T \in \bar{\ell}_{\infty}^{a}$. Then, for each $f \in \ell_{2}$ we have $T f(j)=\phi_{f}(j) f(j)$ for some $\phi_{f} \in \ell_{\infty}$. Hence, for the standard unit vectors e_{j} in ℓ_{2},

$$
T e_{j}(k)=\phi_{e_{j}}(k) e_{j}(k)= \begin{cases}\phi_{e_{j}}(j) & \text { for } j=k, \\ 0 & \text { for } j \neq k .\end{cases}
$$

This implies that $T e_{j}=\phi_{e_{j}}(j) e_{j}$. Now, for $f \in \ell_{2}$ we have

$$
T f=T\left(\sum_{j=1}^{\infty} f(j) e_{j}\right)=\sum_{j=1}^{\infty} f(j) \phi_{e_{j}}(j) e_{j}=f \phi,
$$

where $\phi=\left(\phi_{e_{j}}(j)\right)$. As T is a bounded linear operator, $\phi \in \ell_{\infty}$. Therefore, $T \in \ell_{\infty}$.

We can actually show that ℓ_{∞} is topologically reflexive.
The following lemma will be useful later.
Lemma 2.6. Let $T \in \mathcal{G}\left(C_{0}(\Omega, X)\right)$. Then T is an isometry of order n if and only if there exist a homeomorphism ϕ of Ω and a map $u: \Omega \rightarrow \mathcal{G}(X)$ satisfying

$$
u_{\omega} \circ u_{\phi(\omega)} \circ \cdots \circ u_{\phi^{n-1}(\omega)}=I, \quad \phi^{n}(\omega)=\omega, \quad \forall \omega \in \Omega,
$$

where I denotes the identity map on X and T is given by

$$
T f(\omega)=u_{\omega}(f(\phi(\omega))), \quad \forall f \in C_{0}(\Omega, X), \omega \in \Omega .
$$

Proof. Since $T \in \mathcal{G}\left(C_{0}(\Omega, X)\right)$, there exists a homeomorphism $\phi: \Omega \rightarrow \Omega$ and a map $u: \Omega \rightarrow \mathcal{G}(X)$ such that

$$
T f(\omega)=u_{\omega}(f(\phi(\omega))), \quad \forall f \in C_{0}(\Omega, X), \omega \in \Omega .
$$

As $T \in \mathcal{G}^{n}\left(C_{0}(\Omega, X)\right)$ we have $T^{n} f(\omega)=f(\omega)$. This shows that

$$
\begin{equation*}
u_{\omega} \circ u_{\phi(\omega)} \circ \cdots \circ u_{\phi^{n-1}(\omega)}\left(f\left(\phi^{n}(\omega)\right)\right)=f(\omega) . \tag{2.1}
\end{equation*}
$$

For a fixed $x \in X$ and $\omega \in \Omega$ consider the function $f=h \otimes x$, where $h \in C_{0}(\Omega)$ is such that $h(\omega)=h\left(\phi^{n}(\omega)\right)=1$. Applying (2.1) to f we get

$$
u_{\omega} \circ u_{\phi(\omega)} \circ \cdots \circ u_{\phi^{n-1}(\omega)}(x)=x .
$$

Since this can be done for each $x \in X$ and each $\omega \in \Omega$, we conclude that

$$
u_{\omega} \circ u_{\phi(\omega)} \circ \cdots \circ u_{\phi^{n-1}(\omega)}=I .
$$

This also implies that $f\left(\phi^{n}(\omega)\right)=f(\omega)$ for all $f \in C_{0}(\Omega, X)$. Hence, $\phi^{n}(\omega)=\omega$.
3. Algebraic reflexivity of $\mathcal{G}^{n}\left(C_{0}(\Omega, X)\right)$. Our main result is the following.

Theorem 3.1. Let Ω be a first countable locally compact Hausdorff space, and let X be a Banach space which has the strong Banach-Stone property. If $\mathcal{G}\left(C_{0}(\Omega, X)\right)$ is algebraically reflexive, then $\mathcal{G}^{n}\left(C_{0}(\Omega, X)\right)$ is algebraically reflexive.

Proof. Let $T \in \overline{\mathcal{G}}^{n}\left(C_{0}(\Omega, X)\right) ~ ' . ~ T h e n ~ f o r ~ e a c h ~ f \in C_{0}(\Omega, X)$ we have $T f(\omega)=u_{\omega}^{f}\left(f\left(\phi_{f}(\omega)\right)\right)$ where $u^{f}: \Omega \rightarrow \mathcal{G}(X)$ is continuous in the strong operator topology and satisfies

$$
u_{\omega}^{f} \circ u_{\phi_{f}(\omega)}^{f} \circ \cdots \circ u_{\phi_{f}^{n-1}(\omega)}^{f}=I
$$

and ϕ_{f} is a homeomorphism of Ω such that $\phi_{f}^{n}(\omega)=\omega$ for all $\omega \in \Omega$. In particular $T \in{\overline{\mathcal{G}}\left(C_{0}(\Omega, X)\right.}^{a}$. Hence, there exist a homeomorphism ϕ : $\Omega \rightarrow \Omega$ and a map $u: \Omega \rightarrow \mathcal{G}(X)$ such that

$$
T f(\omega)=u_{\omega}(f(\phi(\omega))), \quad \forall f \in C_{0}(\Omega, X), \omega \in \Omega
$$

To show that $T \in \mathcal{G}^{n}\left(C_{0}(\Omega, X)\right)$, we need to prove that $T^{n}=I$, that is, by Lemma 2.6 ,

$$
u_{\omega} \circ u_{\phi(\omega)} \circ \cdots \circ u_{\phi^{n-1}(\omega)}=I \quad \text { and } \quad \phi^{n}(\omega)=\omega, \quad \forall \omega \in \Omega
$$

Suppose $f=h \otimes x$, where h is a strictly positive function in $C_{0}(\Omega)$ and $0 \neq x \in X$. Then we have $T f(\omega)=u_{\omega}^{f}\left(f\left(\phi_{f}(\omega)\right)\right)=u_{\omega}(f(\phi(\omega)))$, that is, $u_{\omega}^{f}\left(h\left(\phi_{f}(\omega)\right) x\right)=u_{\omega}(h(\phi(\omega)) x)$. Taking norms on both sides and using the fact that $u_{\omega}^{f}, u_{\omega}$ are isometries, and h is strictly positive, we get $u_{\omega}^{f}(x)=u_{\omega}(x)$. Therefore, $u_{\omega}^{f}=u_{\omega}$ for all $\omega \in \Omega$.

Let ω be any point in Ω. We consider the following cases.
Case I: $\omega=\phi(\omega)$. Then

$$
\phi^{n}(\omega)=\phi(\phi(\cdots(\phi(\omega)) \cdots))(n \text { times })=\omega .
$$

We choose $h \in C_{0}(\Omega)$ such that $0<h \leq 1$ and $h^{-1}\{1\}=\{\omega\}$. For $f=h \otimes x$, $0 \neq x \in X$, evaluating $T f$ at ω we get

$$
\begin{aligned}
T f(\omega)=u_{\omega}(& f(\phi(\omega)))=u_{\omega}^{f}\left(f\left(\phi_{f}(\omega)\right)\right) \\
& \Longrightarrow u_{\omega}(h(\phi(\omega)) x)=u_{\omega}^{f}\left(h\left(\phi_{f}(\omega)\right) x\right) \\
& \Longrightarrow u_{\omega}(x)=u_{\omega}^{f}\left(h\left(\phi_{f}(\omega)\right) x\right) \quad(\operatorname{as} h(\phi(\omega))=h(\omega)=1) \\
& \Longrightarrow\left\|u_{\omega}(x)\right\|=\left\|u_{\omega}^{f}\left(h\left(\phi_{f}(\omega)\right) x\right)\right\| \\
& \Longrightarrow h\left(\phi_{f}(\omega)\right)=1 \quad\left(u_{\omega} \text { and } u_{\omega}^{f} \text { are isometries }\right) \\
& \left.\Longrightarrow \phi_{f}(\omega)=\omega \quad \text { (by the choice of } h\right) \\
& \Longrightarrow \phi_{f}^{2}(\omega)=\cdots=\phi_{f}^{n-1}(\omega)=\omega
\end{aligned}
$$

So, we have

$$
\begin{aligned}
I & =u_{\omega}^{f} \circ u_{\phi_{f}(\omega)}^{f} \circ \cdots \circ u_{\phi_{f}^{n-1}(\omega)}^{f} \\
& =u_{\omega}^{f} \circ u_{\omega}^{f} \circ \cdots \circ u_{\omega}^{f} \\
& =u_{\omega} \circ u_{\omega} \circ \cdots \circ u_{\omega}\left(\text { as } u_{\omega}^{f}=u_{\omega}\right) .
\end{aligned}
$$

CASE II: $\phi(\omega) \neq \omega, \phi^{m}(\omega)=\omega$ for some m that divides n and $\phi^{s}(\omega) \neq \omega$ for all $s<m$. As m divides n, there exists a positive integer q such that $n=m q$. Therefore,

$$
\phi^{n}(\omega)=\phi^{m q}(\omega)=\phi^{m}\left(\phi^{m}\left(\cdots\left(\phi^{m}(\omega)\right)\right) \cdots\right)(q \text { times })=\omega
$$

We now choose $h \in C_{0}(\Omega)$ such that $1 \leq h \leq m$ and

$$
h^{-1}\{1\}=\{\omega\}, \quad h^{-1}\{2\}=\{\phi(\omega)\}, \ldots, h^{-1}\{m\}=\left\{\phi^{m-1}(\omega)\right\} .
$$

Let $f=h \otimes x$ for $0 \neq x \in X$. Evaluating $T f$ at $\omega, \phi(\omega), \ldots, \phi^{m-1}(\omega)$ and considering our choice of the function h we get $\phi_{f}^{p}(\omega)=\phi^{p}(\omega)$ for $1 \leq p \leq m$.

This implies that

$$
\phi_{f}^{m+1}(\omega)=\phi_{f}\left(\phi_{f}^{m}(\omega)\right)=\phi_{f}(\omega)=\phi(\omega)=\phi\left(\phi^{m}(\omega)\right)=\phi^{m+1}(\omega)
$$

Thus, $\phi_{f}^{p}(\omega)=\phi^{p}(\omega)$ for $m+1 \leq p \leq n-1$. Since $u_{\omega}=u_{\omega}^{f}$ for all $\omega \in \Omega$, we have

$$
u_{\omega} \circ u_{\phi(\omega)} \circ \cdots \circ u_{\phi^{n-1}(\omega)}=u_{\omega}^{f} \circ u_{\phi_{f}(\omega)}^{f} \circ \cdots \circ u_{\phi_{f}^{n-1}(\omega)}^{f}=I
$$

CASE III: $\phi(\omega) \neq \omega, \phi^{m}(\omega)=\omega$ for some m that does not divide n and $\phi^{s}(\omega) \neq \omega$ for all $s<m$. Then there exist integers r and q such that $n=m q+r, 0<r<m$. We choose $h \in C_{0}(\Omega)$ such that $1 \leq h \leq m$ and

$$
h^{-1}\{1\}=\{\omega\}, \quad h^{-1}\{2\}=\{\phi(\omega)\}, \ldots, h^{-1}\{m\}=\left\{\phi^{m-1}(\omega)\right\} .
$$

By applying $T f$ at $\omega, \phi(\omega), \ldots, \phi^{m-1}(\omega)$ and proceeding as in Case II we get $\phi_{f}^{p}(\omega)=\phi^{p}(\omega)$ for $1 \leq p \leq n-1$. We now see that

$$
\begin{aligned}
T f\left(\phi^{n-1}(\omega)\right)= & u_{\phi^{n-1}(\omega)}\left(f\left(\phi^{n}(\omega)\right)\right)=u_{\phi^{n-1}(\omega)}^{f}\left(f\left(\phi_{f}\left(\phi^{n-1}(\omega)\right)\right)\right) \\
& \Longrightarrow u_{\phi^{n-1}(\omega)}\left(h\left(\phi^{n}(\omega)\right) x\right)=u_{\phi^{n-1}(\omega)}^{f}\left(h\left(\phi_{f}\left(\phi_{f}^{n-1}(\omega)\right)\right) x\right) \\
& \Longrightarrow u_{\phi^{n-1}(\omega)}\left(h\left(\phi^{n}(\omega)\right) x\right)=u_{\phi^{n-1}(\omega)}^{f}\left(h\left(\phi_{f}^{n}(\omega)\right) x\right) \\
& \Longrightarrow u_{\phi^{n-1}(\omega)}\left(h\left(\phi^{n}(\omega)\right) x\right)=u_{\phi^{n-1}(\omega)}^{f}(h(\omega) x)\left(\text { as } \phi_{f}^{n}(\omega)=\omega\right) \\
& \Longrightarrow u_{\phi^{n-1}(\omega)}\left(h\left(\phi^{n}(\omega)\right) x\right)=u_{\phi^{n-1}(\omega)}^{f}(x) \quad(\text { as } h(\omega)=1) \\
& \Longrightarrow\left\|u_{\phi^{n-1}(\omega)}\left(h\left(\phi^{n}(\omega)\right) x\right)\right\|=\left\|u_{\phi^{n-1}(\omega)}^{f}(x)\right\| \\
& \Longrightarrow h\left(\phi^{n}(\omega)\right)=1 \quad\left(u_{\phi^{n-1}(\omega)} \text { and } u_{\phi^{n-1}(\omega)}^{f} \text { are isometries }\right) \\
& \Longrightarrow \phi^{n}(\omega)=\omega \quad(\text { by the choice of } h) .
\end{aligned}
$$

But our assumption that $\phi^{m}(\omega)=\omega$ implies that $\phi^{m q}(\omega)=\omega$. Hence,

$$
\omega=\phi^{n}(\omega)=\phi^{r+m q}(\omega)=\phi^{r}\left(\phi^{m q}(\omega)\right)=\phi^{r}(\omega)
$$

a contradiction because $r<m$.
CASE IV: $\omega, \phi(\omega), \ldots, \phi^{n-1}(\omega)$ are all distinct. Then choose $h \in C_{0}(\Omega)$ such that $1 \leq h \leq n$ and

$$
h^{-1}\{1\}=\{\omega\}, \quad h^{-1}\{2\}=\{\phi(\omega)\}, \ldots, h^{-1}\{n\}=\left\{\phi^{n-1}(\omega)\right\} .
$$

Proceeding as in Case III we get

$$
\phi^{n}(\omega)=\omega \quad \text { and } \quad u_{\omega} \circ u_{\phi(\omega)} \circ \cdots \circ u_{\phi^{n-1}(\omega)}=I .
$$

This completes the proof.
Corollary 3.2. Let Ω be a first countable locally compact Hausdorff space. Let X be a Banach space which has the strong Banach-Stone property, and does not have any generalized bi-circular projections. If $\mathcal{G}\left(C_{0}(\Omega, X)\right)$ is algebraically reflexive, then the set \mathcal{P} of generalized bi-circular projections on $C_{0}(\Omega, X)$ is also algebraically reflexive.

Proof. Let $P \in \overline{\mathcal{P}}^{a}$. Then for each $f \in C_{0}(\Omega, X)$, there exists $P_{f} \in \mathcal{P}$ such that $P f=P_{f} f$. Therefore, by [1, Theorem 4.2] and the assumption on X, for each f there exists a homeomorphism ϕ_{f} of Ω and $u^{f}: \Omega \rightarrow \mathcal{G}(X)$ satisfying

$$
\phi_{f}^{2}(\omega)=\omega \quad \text { and } \quad u_{\omega}^{f} \circ u_{\phi_{f}(\omega)}^{f}=I, \quad \forall \omega \in \Omega
$$

such that

$$
P f(\omega)=\frac{1}{2}\left[f(\omega)+u_{\omega}^{f}\left(f\left(\phi_{f}(\omega)\right)\right)\right] .
$$

Therefore, for each $f \in C_{0}(\Omega, X)$, we get $(2 P-I) f(\omega)=u_{\omega}^{f}\left(f\left(\phi_{f}(\omega)\right)\right)$. This implies that $2 P-I \in \overline{\mathcal{G}}^{2}\left(C_{0}(\Omega, X){ }^{a}\right.$. The conclusion follows from Theorem 3.1.

Combining Theorem 3.1] with [12, Theorem 7] we have the following corollary.

Corollary 3.3. Let Ω be a first countable compact Hausdorff space, and let X be a uniformly convex Banach space such that $\mathcal{G}(X)$ is algebraically reflexive. Then $\mathcal{G}^{n}(C(\Omega, X))$ is algebraically reflexive.

REFERENCES

[1] A. B. Abubaker, F. Botelho and J. Jamison, Representation of generalized bi-circular projections on Banach spaces, Acta Sci. Math. (Szeged) 80 (2014), 591-601.
[2] E. Behrends, M-Structure and the Banach-Stone Theorem, Lecture Notes in Math. 736, Springer, Berlin, 1979.
[3] F. Botelho and J. Jamison, Generalized bi-circular projections on minimal ideals of operators, Proc. Amer. Math. Soc. 136 (2008), 1397-1402.
[4] F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoamer. 18 (2002), 409-430.
[5] S. Dutta and T. S. S. R. K. Rao, Algebraic reflexivity of some subsets of the isometry group, Linear Algebra Appl. 429 (2008), 1522-1527.
[6] M. Fošner, D. Ilišević and C. K. Li, G-invariant norms and bicircular projections, Linear Algebra Appl. 420 (2007), 596-608.
[7] D. Hadwin, Algebraically reflexive linear transformations, Linear Multilinear Algebra 14 (1983), 225-233.
[8] P. R. Halmos, Reflexive lattices of subspaces, J. London Math. Soc. (2) 4 (1971), 257-263.
[9] P. Harmand, D. Werner and W. Werner, M-ideals in Banach Spaces and Banach Algebras, Lecture Notes in Math. 1547, Springer, Berlin, 1993.
[10] D. Ilišević, Generalized bicircular projections on $J B^{*}$-triples, Linear Algebra Appl. 432 (2010), 1267-1276.
[11] K. Jarosz, Any Banach space has an equivalent norm with trivial isometries, Israel J. Math. 64 (1988), 49-56.
[12] K. Jarosz and T. S. S. R. K. Rao, Local isometries of function spaces, Math. Z. 243 (2003), 449-469.
[13] R. King, Generalized bi-circular projections on certain Hardy spaces, J. Math. Anal. Appl. 408 (2013), 35-39.
[14] D. R. Larson, Reflexivity, algebraic reflexivity and linear interpolation, Amer. J. Math. 110 (1988), 283-299.
[15] A. I. Loginov and V. S. Šul'man, Hereditary and intermediate reflexivity of W^{*} algebras, Izv. Akad. Nauk SSSR Ser. Mat. 396 (1975), 1260-1273 (in Russian); English transl.: Math. USSR-Izv. 9 (1975), 1189-1201.
[16] L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Math. 1895, Springer, Berlin, 2007.
[17] L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinburgh Math. Soc. (2) 42 (1999), 17-36.
[18] H. Radjavi and P. Rosenthal, On invariant subspaces and reflexive algebras, Amer. J. Math. 91 (1969), 683-692.
[19] T. S. S. R. K. Rao, Local surjective isometries of function spaces, Exposition. Math. 18 (2000), 285-296.
[20] T. S. S. R. K. Rao, Local isometries of $\mathcal{L}(X, C(K))$, Proc. Amer. Math. Soc. 133 (2005), 2729-2732.
[21] D. Sarason, Invariant subspaces and unstarred operator algebras, Pacific J. Math. 17 (1966), 511-517.

Abdullah Bin Abu Baker
Department of Applied Sciences
Indian Institute of Information Technology Allahabad
Jhalwa, Allahabad 211015, U.P., India
E-mail: abdullahmath@gmail.com

[^0]: 2010 Mathematics Subject Classification: Primary 47L05; Secondary 46B20.
 Key words and phrases: algebraic reflexivity, isometry group, generalized bi-circular projections.
 Received 15 October 2017; revised 11 December 2018.
 Published online *.

