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GENERALIZED 3-CIRCULAR PROJECTIONS FOR UNITARY
CONGRUENCE INVARIANT NORMS

ABDULLAH BIN ABU BAKER

Abstract. A projection P0 on a complex Banach space is generalized 3-
circular if its linear combination with two projections P1 and P2 having co-
efficients λ1 and λ2, respectively is a surjective isometry, where λ1 and λ2 are
distinct unit modulus complex numbers different from 1 and P0⊕P1⊕P2 = I.
Such projections are always contractive. In this paper, we prove structure the-
orems for generalized 3-circular projections acting on the spaces of all n × n
symmetric and skew-symmetric matrices over C when these spaces are equipped
with unitary congruence invariant norms.

1. Introduction

The study of projections on Banach spaces is of great interest since they appear
as building blocks of more complicated operators. This is clearly demonstrated
by the powerful spectral Theory of Operators. Furthermore, spaces supporting
a rich collection of projections present a very nice structure as, for example, the
von Neumann algebras.

A class of projections, known as the generalized bi-circular projections (hence-
forth GBP), has recently attracted the attention of many mathematicians. This
class was introduced by Fošner, Ilǐsević, and Li [9] in 2007. A projection P on
a Banach space X is said to be a GBP if P + λ(I − P ) is a surjective isometry
on X, where λ ∈ T \ {1}. Here, T denotes the unit circle in the complex plane.
In [9], the authors characterized GBPs on finite-dimensional Banach spaces with
respect to various G-invariant norms. Descriptions of GBPs for different Banach
spaces can be found in [1, 5, 11], and [12].

GBPs are one of the generalizations of the notion of orthogonal projections
from Hilbert spaces to arbitrary Banach spaces. To be precise, if H is a Hilbert
space, then P is a GBP on H if and only if P is an orthogonal projection, (see
[7, Proposition 3.1]).

Moreover, it was shown in [17] that GBPs are bicontractive. We say a projec-
tion P is contractive (resp., bicontractive) if ‖P‖ = 1 (resp., ‖P‖ = ‖I−P‖ = 1).
Attempts to describe the structure of contractive or bicontractive projections on
classical Banach spaces like C0(Ω) or Lp and on spaces of operators, especially
C∗- algebras, have received lots of attention in past as well as in recent time. The
seminal work by Lindenstrauss [18] and the book [13] by Lacey are two classical
references for the study of contractive projections.
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Furthermore, it has been shown by Benau, Lacey [4], Dutta, Rao [8] and Lima
[16] that on certain function spaces, for any bicontractive projection P , Φ = 2P−I
is an isometry, which implies that P is a GBP . These include the spaces Lp
(1 ≤ p < ∞), C(Ω), C(Ω, X) and the space of affine continuous functions on a
Choquet simplex, A(K).

The notion of a GBP was generalized in [2, 3] as follows.

Definition 1.1. Let X be a complex Banach space. A projection P0 on X is said
to be a generalized n-circular projection, (GnP , for short), n ≥ 2, if there exist
λ1, λ2, . . . , λn−1 ∈ T \ {1}, λi, i = 1, 2, . . . , n − 1 of finite order and nontrivial
projections P1, P2, . . . , Pn−1 on X such that

(a) λi 6= λj for i 6= j
(b) P0 ⊕ P1 ⊕ · · · ⊕ Pn−1 = I
(c) P0 + λ1P1 + · · ·+ λn−1Pn−1 is a surjective isometry.

Recently, in [2] the authors studied generalized 3-circular projections (G3Ps
for short) on C(Ω), where Ω is a compact connected Hausdorff space. Let P0

be a G3P on C(Ω); that is, P0 + λ1P1 + λ2P2 = T for some surjective isometry
T , and λi and Pi are as in Definition 1.1, i = 1, 2. Then it was shown that λ1
and λ2 are cube roots of unity and P0 = I+T+T 2

3
such that T 3 = I. The main

reason for this characterization is the fact that GBPs on C(Ω) are of the form
I+T
2

, where T 2 = I (see [6]). This raises the question of whether G3Ps on other

Banach spaces are of the above form when GBPs are of the form I+L
2

, where
L is a surjective isometry and L2 = I. The obvious candidates for investigation
are finite-dimensional Banach spaces like Cn or space of matrices. If X is an n-
dimensional inner product space and ‖·‖ is a norm on X, which is a multiple of the
norm induced by the inner product, then any GBP is an orthogonal projection
(see [9, Proposition 2.1]); hence, we have to consider other norms like symmetric
norms or unitary congruence invariant norms.

Now, different norms on finite- or infinite-dimensional Banach spaces are useful
in many geometrical and analytical problems. The expository article by Chi-
Kwong Li [15] is a pertinent reference for the importance of studying different
kinds of norms.

The structures of G3Ps on Cn and Mm×n(C), where these spaces are equipped
with a symmetric norm, are described in [3]. The purpose of this paper is to
give complete descriptions of the structures of G3Ps on the spaces of symmetric
and skew-symmetric matrices when these spaces are equipped with a unitary
congruence invariant norm.

2. Preliminaries and notation

Given two matrices A, B ∈ Mn(C), A is said to be unitarily similar to B if
there exists a unitary U ∈ Mn(C) such that A = U∗BU . Similarly, A is said to
be unitarily congruent to B if A = U tBU for some unitary U ∈Mn(C). Unitary
similarity is a natural equivalence relation in the study of normal or Hermitian
matrices: U∗AU is normal (resp., Hermitian) if U is unitary and A is normal
(resp., Hermitian). Unitary congruence is a natural equivalence relation in the
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study of complex symmetric or skew-symmetric matrices: U tAU is symmetric
(respectively, skew symmetric) if U is unitary and A is symmetric (respectively,
skew symmetric). We refer the reader to [10] for more details on this subject.

Let us denote by
Sn(C): the space of all n× n symmetric matrices over C,
Kn(C): the space of all n× n skew-symmetric matrices over C, and
U(Cn): the group of all unitary operators on Cn.
We recall the definition of a unitary congruence invariant norm.

Definition 2.1. A norm on X = Sn(C) or Kn(C) is called unitary congruence
invariant if for every A ∈ X we have ‖U tAU‖ = ‖A‖ for all U ∈ U(Cn).

To characterize G3Ps, we first need to identify the surjective linear isometries
on Sn(C) and Kn(C) for unitary congruence invariant norms. The descriptions
of the isometry group of these spaces are given in the following theorems.

Theorem 2.2. [14, Theorem 2.8] For a unitary congruence invariant norm on
Sn(C), which is not a multiple of the Frobenius norm, any isometry T is given by
T (A) = U tAU , where U ∈ U(Cn).

Theorem 2.3. [14, Theorem 2.9] For a unitary congruence invariant norm on
Kn(C), n 6= 4, which is not a multiple of the Frobenius norm, any isometry T is
given by T (A) = U tAU , where U ∈ U(Cn).

If n = 4, then any isometry T is given by either T (A) = U tAU or T (A) =
ψ(U tAU), where U ∈ U(Cn) and ψ(A) is obtained from A by interchanging its
(1, 4) and (2, 3) entries, and interchanging its (4, 1) and (3, 2) entries.

Remark 2.4. In the sequel, whenever we mention that P0 is a G3P and write
P0 + λ1P1 + λ2P2 = T , we will always mean that T , λi, and Pi, i = 1, 2 are as in
Definition 1.1. The scalars λ1 and λ2 will be sometimes referred to as the scalars
associated with P0.

Remark 2.5. Let P0 be a G3P on a Banach space X such that P0+λ1P1+λ2P2 =
T . Then

P0 =
(T − λ1I)(T − λ2I)

(1− λ1)(1− λ2)
, P1 =

(T − I)(T − λ2I)

(λ1 − 1)(λ1 − λ2)
and

P2 =
(T − I)(T − λ1I)

(λ2 − 1)(λ2 − λ1)
.

The following Lemma will be useful later. Its proof is similar to the proof of
Lemma 2.1 in [2].

Lemma 2.6. Let X be a Banach space satisfying the following property:
whenever P is a projection on X such that P+λ(I−P ) is a surjective isometry,

we have λ = −1.
Let P0 be a G3P on X such that P0 + λ1P1 + λ2P2 = T . Then λ1 and λ2 are

of the same order.
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3. Structure of G3P for symmetric matrices

In this section we characterize G3Ps on Sn(C) with a unitary congruence in-
variant norm.

Remark 3.1. Suppose that T : Sn(C) −→ Sn(C) is defined by T (A) = U tAU ,
where U ∈ U(Cn). Assume that U t has eigenvalues µ1, µ2, . . . , µn with eigenvec-
tors x1, x2, . . . , xn. Then T has eigenvalues µiµj with eigenvectors xix

t
j +xjx

t
i for

1 ≤ i, j ≤ n. To see this, observe that, for any two eigenvalues µi and µj of U t

with corresponding eigenvectors xi and xj, we have

T (xix
t
j + xjx

t
i) = U t(xix

t
j + xjx

t
i)U

= U txix
t
jU + U txjx

t
iU

= µixiµjx
t
j + µjxjµix

t
i

= µiµj(xix
t
j + xjx

t
i).

Now, if λ is an eigenvalue of T with eigenvector A, then U tAU = λA or U tA =
λAU∗. For an eigenvalue µi of U t with eigenvector xi, we have U tAxi = λAU∗xi =
λAµixi = λµiAxi. This implies that λµi is an eigenvalue of U t, and hence
λµi = µj for some j. As eigenvalues of a unitary matrix are of a unit modu-
lus, we have λ = µiµj or λ = µ2

i if i = j.

Theorem 3.2. Let ‖ ·‖ be a unitary congruence invariant norm on Sn(C), which
is not a multiple of the Frobenius norm, and let P0 a G3P . Then there exist an
integer p and Ri = R∗i = R2

i in Mn(C) such that

P0(A) =

p−1∑
i=0

Rt
iAR(p−i)(mod p),

where
(i) i = 0, 1, . . . , p− 1 and p is an odd integer ≥ 3,
(ii) RiRj = 0 for i 6= j,

(iii)

p−1∑
i=0

Ri = I.

Proof. Let P0 +λ1P1 +λ2P2 = T such that T is of the form A 7−→ U tAU for some
U ∈ U(Cn). The spectrum of T is {1, λ1, λ2}. Suppose that U has eigenvalues
µ1, µ2, . . . , µn. Then T has eigenvalues µiµj, 1 ≤ i, j ≤ n.

We claim that U can have two or three distinct eigenvalues.
To see the claim, suppose that U has one eigenvalue, say, µ. Then T will have

eigenvalue µ2, which is a contradiction.
If U has four distinct eigenvalues, say, µ1, µ2, µ3, and µ4, then µ1µ2, µ1µ3, µ1µ4

and µ2
1 are distinct eigenvalues of T , which is impossible. Similarly, U cannot have

more than four distinct eigenvalues.
So, we consider the following two steps.

Step I
Assume that µ1, µ2, and µ3 are distinct eigenvalues of U . Then the set A =
{µ2

1, µ1µ2, µ1µ3, µ
2
2, µ2µ3, µ

2
3} consists of eigenvalues of T . The elements µ2

1, µ1µ2,
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µ1µ3 are all distinct. Therefore, µ2µ3 = µ2
1, which implies that µ2

2 = µ1µ3 and
µ2
3 = µ1µ2. Then A = {µ2

1, µ
2
2, µ

2
3}. Due to the symmetry of these elements

it is sufficient to consider µ2
1 = 1, µ2

2 = λ1, and µ2
3 = λ2. Thus, µ1µ3 = λ1,

µ2
3 = λ2 = λ21, and µ2

2µ
2
3 = 1 = λ1λ2. Therefore, λ1 and λ2 are cube roots of

unity, and hence T 3(A) = A = X tAX for all A ∈ Sn(C), where X = U3. Putting
A = I, we have X tX = I or X t = X−1. This implies that A = X tAX = X−1AX
or XA = AX. But the centralizer of the space of symmetric matrices is ±I, and
so X = I or −I.

Let U3 = I. We put

Ri =
I + αiU + α2

iU
2

3
,

where i = 0, 1, 2; α0 = 1, α1 = ω; and α2 = ω2. Then we have

P0A = Rt
0AR0 +Rt

1AR2 +Rt
2AR1.

Let U3 = −I. We put

Ri =
I − αiU + α2

iU
2

3
,

where i = 0, 1, 2, α0 = 1, α1 = ω; and α2 = ω2. Then we obtain

P0A = Rt
0AR0 +Rt

1AR2 +Rt
2AR1.

In both cases, it is straightforward to verify that Ri = R∗i = R2
i for i 6= j,

RiRj = 0, and R0 +R1 +R2 = I; and hence, the theorem is proved for p = 3.

Step II
Suppose that U has two distinct eigenvalues, say, µ1 and µ2. Then the spectrum

of T will be {µ2
1, µ

2
2, µ1µ2} = {1, λ1, λ2}.

Lemma 2.6 and Proposition 5.1 in [9] imply that λ1 and λ2 have the same
order. Let p be the order of λ1.

Consider the following two cases:
(a) If µ2

1 = 1, µ2
2 = λ2, and µ1µ2 = λ1, then we get λ21 = λ2 or λ1 = ±

√
λ2.

We first claim that λ1 6= −
√
λ2. To see this, if λ1 = −

√
λ2, then we have

λp1 = (−
√
λ2)

p = 1 or (−1)p(λ2)
p/2 = 1. This shows that p is odd; otherwise,

(λ2)
p/2 = 1, which is a contradiction because the order of λ2 is p. Hence, we get

(λ2)
p/2 = −1. It follows that λp1 = −1, a contradiction since the order of λ1 is p.

Thus, we must have λ1 =
√
λ2 and λp1 = (

√
λ2)

p = (λ2)
p/2 = 1. This implies

that p is odd. As the order of λ1 is p, we have Up = I. Further, for i =
0, 1, . . . , p− 1, we have

P0 + λi1P1 + λi2P2 = T i.

Adding these equations, we get

pP0 + (

p−1∑
i=0

λi1)P1 + (

p−1∑
i=0

λi2)P2 = I + T + T 2 + · · ·+ T p−1.
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Since

p−1∑
i=0

λi1 =

p−1∑
i=0

λi2 = 0, we obtain

P0 =
I + T + T 2 + · · ·+ T p−1

p
.

We now define

Ri =
1

p

p−1∑
j=0

λij1 U
j,

where i = 0, 1, . . . , p − 1. It can be easily verified that Ri = R∗i = R2
i for i 6= j,

RiRj = 0, and

p−1∑
i=0

Ri = I.

Therefore, P0 will be of the form

P0(A) =

p−1∑
i=0

Rt
iAR(p−i)(mod p).

We can also get the form of P1 and P2. We first observe that Pj, j = 1, 2, will
have the form

Pj =
I + λjT + λj

2
T 2 + · · ·+ λj

p−1
T p−1

p
.

But λj = λp−1j and λ21 = λ2, so we get

P1(A) =

p−1∑
i=0

Rt
iAR(p−1−i)(mod p).

Similarly,

P2(A) =

p−1∑
i=0

Rt
iAR(p−2−i)(mod p).

Here, we note that the order of λ1 and λ2 can be 3.
(b) If µ2

1 = λ1, µ
2
2 = λ2, and µ1µ2 = 1, then we get λ1λ2 = 1. Now,

T = P0 + λ1P1 + λ1P2

=⇒ λ1T = P2 + λ1P0 + λ21P1.

Because λ1T is again an isometry, we are reduced to the previous case, and so
P2 will be of the form P2(A) =

∑p−1
i=0 R

t
iAR(p−i)(mod p), where the Ri’s satisfy

conditions (i)− (iii) of Theorem 3.2.
Proceeding in the same way as above, we can easily obtain the form of P0.
This completes the proof. �
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4. Structure of G3Ps for skew-symmetric matrices

In this section, we identify the structure of G3Ps on Kn(C) with a unitary
congruence invariant norm.

Remark 4.1. Suppose that T : Kn(C) −→ Kn(C) is defined by T (A) = U tAU ,
where U ∈ U(Cn). Assume that U t has eigenvalues µ1, µ2, . . . , µn with eigen-
vectors x1, x2, . . . , xn. Then, arguing in a similar fashion as we did in Remark
3.1, we can show that T has eigenvalues µiµj with eigenvectors xix

t
j − xjxti for

1 ≤ i < j ≤ n. Now, suppose that µi is an eigenvalue of multiplicity at least 2
and xi, yi are the corresponding eigenvectors. In this case,

T (xiy
t
i − yixti) = U t(xiy

t
i − yixti)U

= U txiy
t
iU − U tyix

t
iU

= µixiµiy
t
i − µiyiµixti

= µ2
i (xiy

t
i − yixti).

Therefore, we conclude that µ2
i is an eigenvalue of T if the multiplicity of the

eigenvalue µi is at least 2.

The following remark will be used in the proof of Theorem 4.3 (see the remark
before Proposition 5.1 in [9]).

Remark 4.2. We note that the mapping on K4(C) defined by A 7−→ ψ(UAU t)
can be written as A 7−→ det(U)Wψ(A)W t with W = RUR, where R = E14 −
E23 + E32 − E41.

Since K2(C) is one-dimensional, we assume that n ≥ 3.

Theorem 4.3. Let ‖ · ‖ be a unitary congruence invariant norm on Kn(C) not
equal to a multiple of the Frobenius norm, n ≥ 3 and P0 be a G3P . Suppose the
scalars λ1 and λ2 associated with P0 are cube roots of unity. Then one and only
one of the following assertions holds:

(a) There exist Ri = R∗i = R2
i in Mn(C) such that RiRj = 0 for i 6= j,

R0 +R1 +R2 = I, and P0(A) = Rt
0AR0 +Rt

1AR2 +Rt
2AR1.

(b) n = 4 and the isometry associated with P0 is of the form A 7−→
ψ(UAU t). Then there exist U ∈ U(C4), α, β ∈ C with α3 = β2, α = 1

det(U)
,

and V ∈ U(C4) such that ψ(U tAU) = αV tAV , V 3 = 1
β
I, and

P0(A) =
A+ αV tAV + α2(V t)2AV 2

3
.

Proof. Let P0 + λ1P1 + λ2P2 = T , where T (A) = U tAU for some U ∈ U(Cn). As
λ1 and λ2 are cube roots of unity, we have T 3 = I. Thus, for all A ∈ Kn(C),
A = T 3(A) = X tAX, where X = U3. This is possible if and only if X = I or −I.
If U3 = I, then we define

Ri =
I + αiU + α2

iU
2

3
, i = 0, 1, 2, α0 = 1, α1 = ω, and α2 = ω2.

It follows that
P0A = Rt

0AR0 +Rt
1AR2 +Rt

2AR1.
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If U3 = −I, we define

Ri =
I − αiU + α2

iU
2

3
, i = 0, 1, 2, α0 = 1, α1 = ω, and α2 = ω2.

We conclude that P0 has the form

A 7−→ Rt
0AR0 +Rt

1AR2 +Rt
2AR1.

In both cases, it can be easily verified that Ri = R∗i = R2
i , RiRj = 0 for i 6= j

and R0 +R1 +R2 = I.
Thus, we get assertion (a).
Suppose that n = 4 and that there is a U ∈ U(C4) such that

T (A) = ψ(U tAU) = det(U)Wψ(A)W t,

with W = RUR and R = E14 − E23 + E32 − E41. This implies that ψ(T (A)) =
ψ2(U tAU) = U tAU . Therefore,

T 2(A) = T (T (A)) = ψ(U tT (A)U)

= det(U)Wψ(T (A))W t

= det(U)WU tAUW t

= det(U)X tAX with X = UW t.

It follows that

T 3(A) = T 2(T (A)) = det(U)X tT (A)X.

Since T 3 = I and XX∗ = X∗X = I, we get T (A) = αXAX∗, where α = 1
det(U)

.

This implies that

T 2(A) = α2X
2
A(X∗)2 and T 3(A) = α3X

3
A(X∗)3.

Since T 3 is the identity operator, there exists β ∈ C with β2 = α3 such that
I = β(X∗)3.

Hence, assertion (b) is proved. �

Theorem 4.4. Let ‖ · ‖ be a unitary congruence invariant norm on Kn(C) not
equal to a multiple of the Frobenius norm, n ≥ 3 and P0 be a G3P . Suppose
the scalars λ1 and λ2 associated with P0 are not cube roots of unity and n 6= 4.
Then there exist Ri = R∗i = R2

i in Mn(C), i = 1, . . . , p with RiRj = 0 for i 6= j,
Rt
iARi = 0 for all A ∈ Kn(C), and U ∈ U(Cn) such that one and only one of the

following assertions holds:
(a) U has three distinct eigenvalues and each has multiplicity one and
P0(A) = A− (AR1 + AR2) + (AR1 + AR2)

t + 2(Rt
1AR2 +Rt

2AR1).
(b) U has two distinct eigenvalues and P0(A) is equal to one of the follow-
ing:

(i)
p∑
i=1

(ARi +Rt
iA)− 2

p∑
i,j=1
i 6=j

Rt
iARj;

(ii)
p∑

i,j=1
i 6=j

Rt
iARj.
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(c) U has three distinct eigenvalues and only one has multiplicity greater
than 1. Then P0(A) is equal to one of the following:
(i) AR1 +Rt

1A−Rt
1AR2 −Rt

2AR1;
(ii) A− (AR1 + AR2) + (AR1 + AR2)

t + 2(Rt
1AR2 +Rt

2AR1).

Remark 4.5. In the case when n = 4, we were not able to find the structure of
the G3P P0. Note that if P is GBP on K4(F), where F = R or C, then the scalar
associated with P is −1 (see Proposition 5.2 in [9]).

Since the proof of the above theorem is long, we divide it into lemmas and
propositions.

Let P0 +λ1P1 +λ2P2 = T , where T (A) = U tAU for some U ∈ U(Cn). Suppose
that U has m distinct eigenvalues, say, µ1, µ2, . . . , µm.

We will first prove that the unitary matrix U has two or three distinct eigen-
values. If U has three distinct eigenvalues, then only one can have multiplicity
greater than 1. In all the possible cases we will identify the structure of the G3Ps
P0. As we will see later, we use the spectral theorem for normal matrices, which
states that any normal matrix A is unitary diagonalizable; that is, there exist a
W ∈ U(Cn) such that A = W ∗DW , where D is a diagonal matrix.

Let us set some notation. Let {µ1, µ2, . . . , µk} (k ≤ n and µi 6= µj with
i 6= j) be the eigenvalues of U with multiplicities n1, . . . , nk (ni ≥ 1) respectively.
Remark 4.1 states that µiµj (i 6= j) is an eigenvalue of T . We observe that k > 1
since otherwise U = µI and T = µ2I. We also observe that if k = 2, then ni ≥ 2
for i = 1, 2.

Lemma 4.6. If µ1, µ2, . . . , µk are k distinct eigenvalues of U , then k = 2 or
k = 3.

Proof. Suppose k ≥ 4. Then µ1, µ2, µ3, µ4 are all distinct. We have that µ1µ2,
µ1µ3, µ1µ4 are also distinct and eigenvalues of T . This implies that

µ2µ3 = µ1µ4, µ2µ4 = µ1µ3 and µ3µ4 = µ1µ2.

Therefore,

µ2µ
2
3 = µ1µ3µ4 = µ2µ

2
4 and µ3 = −µ4.

Further, µ2
3µ4 = µ2

2µ4 implying that µ3 = −µ2. This leads to an absurdity since
µ2 6= µ4. This shows that k ≤ 3 and completes the proof. �

Lemma 4.7. If k = 3, then the unitary matrix U can have only one eigenvalue
with multiplicity greater than 1.

Proof. Suppose otherwise that µ1, µ2 and µ3 are eigenvalues of U such that ni > 1
∀ i = 1, 2, 3. Then the set A = {µ2

1, µ1µ2, µ1µ3, µ
2
2, µ2µ3, µ

2
3} consists of eigenval-

ues of T . Proceeding exactly as in Step I of Theorem 3.2 we have that λ1 and λ2
are cube roots of unity. This is impossible since λ1 + λ2 6= −1.

Now, suppose that ni > 1 for i = 1, 2, then A = {µ2
1, µ1µ2, µ1µ3, µ

2
2, µ2µ3} and

µ2
1 = µ2µ3, µ

2
2 = µ1µ3. This implies that µ2

1µ
2
2 = µ1µ2µ

2
3 or µ2

3 = µ1µ2, and we
are back to the previous case. This completes the proof. �

Now, we find the structure of P0 in all the possible cases.
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Proposition 4.8. With the assumptions of Theorem 4.4, suppose that the unitary
matrix U has three distinct eigenvalues each with multiplicity 1. Then there exist
Ri = R∗i = R2

i in Mn(C), i = 1, 2 with RiRj = 0 for i 6= j and Rt
iARi = 0 for all

A ∈ Kn(C) such that
P0(A) = A− (AR1 + AR2) + (AR1 + AR2)

t + 2(Rt
1AR2 +Rt

2AR1).

Proof. Suppose that µ1, µ2 and µ3 are the eigenvalues of U . Since ni = 1 ∀
i = 1, 2, 3 we have n = 3. Moreover, the spectrum of T will be {µ1µ2, µ1µ3, µ2µ3}
which is equal to {1, λ1, λ2}.

Without loss of generality, we can assume that µ1µ2 = 1, µ1µ3 = λ1 and µ2µ3 =
λ2. By the spectral theorem for normal matrices there exists a unitary matrix W
such that

U = W ∗ diag(µ1, µ2, µ3)W = W ∗(µ1E11 + µ2E22 + µ3E33)W

= W ∗(µ1E11 + µ2E22 + µ3(I − E11 − E22))W.

Let Ri = W ∗EiiW , i = 1, 2. Then we have Rt
i = W tEiiW . This implies that

U = µ3I + (µ1 − µ3)R1 + (µ2 − µ3)R2.

We observe that EiiAEii = 0 for all A ∈ Kn(C) and hence we get Rt
1AR1 =

Rt
2AR2 = 0. Now, we have
T (A) = U tAU =

[µ3A+ (µ1 − µ3)R
t
1A+ (µ2 − µ3)R

t
2A][µ3I + (µ1 − µ3)R1 + (µ2 − µ3)R2]

= µ2
3A+ µ3(µ1 − µ3)(AR1 +Rt

1A) + µ3(µ2 − µ3)(AR2 +Rt
2A)

+ (µ1 − µ3)(µ2 − µ3)(R
t
1AR2 +Rt

2AR1).

= λ1λ2A+ λ1(1− λ2)(AR1 +Rt
1A) + λ2(1− λ1)(AR2 +Rt

2A)

+(1− λ1)(1− λ2)(Rt
1AR2 +Rt

2AR1).

Similarly, we can show that

T 2(A) = µ4
3A+ µ2

3(µ
2
1 − µ2

3)(AR1 +Rt
1A) + µ2

3(µ
2
2 − µ2

3)(AR2 +Rt
2A)+

(µ2
1 − µ2

3)(µ
2
2 − µ2

3)(R
t
1AR2 +Rt

2AR1)

= λ21λ
2
2A+ λ21(1− λ22)(AR1 +Rt

1A) + λ22(1− λ21)(AR2 +Rt
2A)

+(1− λ21)(1− λ22)(Rt
1AR2 +Rt

2AR1).

Therefore, we have

P0(A) =
T 2(A)− (λ1 + λ2)T (A) + λ1λ2A

(1− λ1)(1− λ2)

= λ1λ2[A− AR1 −Rt
1A− AR2 −Rt

2A] + (1 + λ1λ2)(R
t
1AR2 +Rt

2AR1).

Computing P 2
0 (A) and using the fact that P0 is a projection, we get λ1λ2 = 1.

Therefore,
P0(A) = A− (AR1 + AR2) + (AR1 + AR2)

t + 2(Rt
1AR2 +Rt

2AR1).
This completes the proof of assertion (a) of Theorem 4.4 �

Proposition 4.9. With the assumptions of Theorem 4.4, suppose that U has two
distinct eigenvalues. Then P0(A) is equal to one of the following:
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(a)
p∑
i=1

(ARi +Rt
iA)− 2

p∑
i,j=1
i 6=j

Rt
iARj;

(b)
p∑

i,j=1
i 6=j

Rt
iARj.

Proof. Suppose that µ1 and µ2 are the two distinct eigenvalues of U with ni ≥ 2.
Thus, the spectrum of T is {µ2

1, µ
2
2, µ1µ2} = {1, λ1, λ2}.

If µ2
1 = λ1, µ

2
2 = λ2 and µ1µ2 = 1, then we get λ1λ2 = 1.

If µ2
1 = 1, µ2

2 = λ2 and µ1µ2 = λ1, then we get λ2 = λ21.
Consequently the eigenvalues of U will have one of the following patterns

(a)
√
λ1,
√
λ1, . . . ,

√
λ1,
√
λ2,
√
λ2, . . . ,

√
λ2,

(b) −
√
λ1,−

√
λ1, . . . ,−

√
λ1,−

√
λ2,−

√
λ2, . . . ,−

√
λ2,

(c) 1, 1, . . . , 1, λ1, λ1, . . . , λ1 or
(d) −1,−1, . . . ,−1,−λ1,−λ1, . . . ,−λ1.

Now, there exists a unitary matrix W such that

U = W ∗ diag(µ1, . . . , µ1, µ2, . . . , µ2)W.

Suppose the multiplicities of µ1 and µ2 are are p and q respectively. Then we
have

U = W ∗(µ1E11 + · · ·+ µ1Epp + µ2Ep+1p+1 + · · ·+ µ2Enn)W

= W ∗(µ1E11 + · · ·+ µ1Epp + µ2(I − E11 − · · · − Epp))W
= µ2I + (µ1 − µ2)W

∗(E11 + · · ·+ Epp)W

Let Ri = W ∗EiiW , i = 1, . . . , p so that we get

U = µ2I + (µ1 − µ2)(R1 + · · ·+Rp).

As we observed earlier, Rt
iARi = 0 for all A ∈ Kn(C). Consequently, we have

T (A) = U tAU

= [µ2A+ (µ1 − µ2)(R
t
1A+ · · ·+Rt

pA)][µ2I + (µ1 − µ2)(R1 + · · ·+Rp)]

= µ2
2A+ µ2(µ1 − µ2)

p∑
i=1

(ARi +Rt
iA) + (µ1 − µ2)

2

p∑
i,j=1
i 6=j

Rt
iARj.

Similarly, we have
T 2(A)

= [µ2
2A+ (µ2

1 − µ2
2)(R

t
1A+ · · ·+Rt

pA)][µ2
2I + (µ2

1 − µ2
2)(R1 + · · ·+Rp)]

= µ4
2A+ µ2

2(µ
2
1 − µ2

2)

p∑
i=1

(ARi +Rt
iA) + (µ2

1 − µ2
2)

2

p∑
i,j=1
i 6=j

Rt
iARj.

If (a) or (b) holds, then the expressions of T (A) and T 2(A) become

T (A) = λ2A+ (1− λ2)
p∑
i=1

(ARi +Rt
iA) + (λ1 + λ2 − 2)

p∑
i,j=1
i 6=j

Rt
iARj,
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T 2(A) = λ22A+ (1− λ22)
p∑
i=1

(ARi +Rt
iA) + (λ21 + λ22 − 2)

p∑
i,j=1
i 6=j

Rt
iARj.

Therefore, we have

P0(A) =
T 2(A)− (λ1 + λ2)T (A) + λ1λ2A

(1− λ1)(1− λ2)

=

p∑
i=1

(ARi +Rt
iA)− 2

p∑
i,j=1
i 6=j

Rt
iARj.

If (c) or (d) holds, then the expressions of T (A) and T 2(A) are

T (A) = λ21A+ (λ1 − λ21)
p∑
i=1

(ARi +Rt
iA) + (1− λ1)2(

p∑
i,j=1
i 6=j

Rt
iARj,

T 2(A) = λ41A+ (λ21 − λ41)
p∑
i=1

(ARi +Rt
iA) + (1− λ21)2

p∑
i,j=1
i 6=j

Rt
iARj.

Now, we have

P0(A) =

p∑
i,j=1
i 6=j

Rt
iARj.

This completes the proof of assertion (b) of Theorem 4.4. �

Proposition 4.10. With the assumptions of Theorem 4.4, suppose that U has
three distinct eigenvalues and only one with multiplicity greater than 1. Then
P0(A) is equal to one of the following:

(a) AR1 +Rt
1A−Rt

1AR2 −Rt
2AR1;

(b) A− (AR1 + AR2) + (AR1 + AR2)
t + 2(Rt

1AR2 +Rt
2AR1).

Proof. Suppose that U has three distinct eigenvalues, say, µ1, µ2, µ3 with n1 > 1.
Thus, the spectrum of T will be

{µ2
1, µ1µ2, µ2µ3, µ1µ3} = {1, λ1, λ2}.

This is possible only if µ2
1 = µ2µ3. As a result, there are two possibilities:

(i) µ2
1 = λ1, µ1µ2 = 1, µ1µ3 = λ2 and

(ii) µ2
1 = 1, µ1µ2 = λ1, µ1µ3 = λ2.

If (i) holds, then λ21 = µ2
1µ

2
1 = µ2

1µ2µ3 = λ2.
If (ii) holds, then λ1λ2 = µ1µ2µ1µ3 = µ2

1µ2µ3 = µ4
1 = 1.

Consequently the eigenvalues of U will have one of the following patterns:
(a)
√
λ1, . . . ,

√
λ1,

1√
λ1
, λ2√

λ1
,

(b) −
√
λ1, . . . ,−

√
λ1,− 1√

λ1
,− λ2√

λ1
,

(c) 1, . . . , 1, λ1, λ2 or
(d) −1, . . . ,−1,−λ1,−λ2.



GENERALIZED 3-CIRCULAR PROJECTIONS 13

Thus, there exists a unitary matrix W such that

U = W ∗ diag(µ2, µ3, µ1, . . . , µ1)W

= W ∗[µ2E11 + µ3E22 + µ1(I − E11 − E22)]W

Using the previous notation, we get

U = µ2R1 + µ3R2 + µ1(I −R1 −R2)

= µ1I + (µ2 − µ1)R1 + (µ3 − µ1)R2

Now, we have T (A) = U tAU

= [µ1A+ (µ2 − µ1)R
t
1A+ (µ3 − µ1)R

t
2A][µ1I + (µ2 − µ1)R1 +

(µ3 − µ1)R2] = µ2
1A+ µ1(µ2 − µ1)(AR1 +Rt

1A) + µ1(µ3 − µ1)

(AR2 +Rt
2A) + (µ2 − µ1)(µ3 − µ1)(R

t
1AR2 +Rt

2AR1).

Similarly, we have

T 2(A) = µ4
1A+ µ2

1(µ
2
2 − µ2

1)(AR1 +Rt
1A) + µ2

1(µ
2
3 − µ2

1)(AR2 +Rt
2A)

+ (µ2
2 − µ2

1)(µ
2
3 − µ2

1)(R
t
1AR2 +Rt

2AR1).

If (a) or (b) holds, then we have

T (A) = λ1A+ (1− λ1)(AR1 +Rt
1A) + (λ21 − λ1)(AR2 +Rt

2A)

− (1− λ1)2(Rt
1AR2 +Rt

2AR1),

and

T 2(A) = λ21A+ (1− λ21)(AR1 +Rt
1A) + (λ41 − λ21)(AR2 +Rt

2A)

− (1− λ21)2(Rt
1AR2 +Rt

2AR1).

Therefore, P0(A) will have the form

A 7−→ AR1 +Rt
1A−Rt

1AR2 −Rt
2AR1.

If (c) or (d) holds, then we have

T (A) = A+ (λ1 − 1)(AR1 +Rt
1A) + (λ2 − 1)(AR2 +Rt

2A)

+ (2− λ1 − λ2)(Rt
1AR2 +Rt

2AR1),

and

T 2(A) = A+ (λ21 − 1)(AR1 +Rt
1A) + (λ22 − 1)(AR2 +Rt

2A)

+ (2− λ21 − λ22)(Rt
1AR2 +Rt

2AR1).

Therefore, P0(A) will have the form

A 7−→ A− (AR1 + AR2) + (AR1 + AR2)
t + 2(Rt

1AR2 +Rt
2AR1).

This completes the proof of assertion (c) of Theorem 4.4.
Hence, the proof of Theorem 4.4 is complete. �
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5. Remarks

It is interesting to note here that the techniques used above to describe G3P s
in the spaces of complex symmetric and skew-symmetric matrices may be used
to describe GnP s as well, for n > 3. However, as it is evident from the proofs,
the number of cases to be considered becomes increasingly larger and larger with
greater values of n.

As pointed out in the Remark 4.5, the structure of G3P on Kn(C) is still
unknown when n = 4. We end this paper by stating the following conjecture.

Conjecture 5.1. Let ‖ · ‖ be a unitary congruence invariant norm on K4(C),
and let P0 be a G3P . Then the scalars associated with P0 are cube roots of unity.
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