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STRUCTURES OF GENERALIZED 3-CIRCULAR

PROJECTIONS FOR SYMMETRIC NORMS

A. B. ABUBAKER AND S DUTTA

Abstract. Recently several authors investigated structures of general-

ized bi-circular projections in spaces where the descriptions of the group

of surjective isometries are known. Following the same idea in this paper

we give complete descriptions of Generalized 3-circular Projections for

symmetric norms on Cn and Mm×n(C).

1. Introduction

Let X be a complex Banach space and T a surjective isometry of X such

that Tn = I, for some n ≥ 2, where I denotes the identity operator on

X. Then P = I+T+···+Tn−1

n is a projection on X. Such a projection is

called generalized n-circular projection, see [4]. Let λ0 = 1, λ1, λ2, . . . , λn−1

be the n distinct roots of unity. For i = 1, 2, . . . , n − 1, we define Pi =
I+λiT+λi

2
T 2+···+λi

n−1
Tn−1

n . Then each Pi is a projection, P0⊕P1⊕P2⊕· · ·⊕
Pn−1 = I and P0 + λ1P1 + λ2P2 + · · ·+ λn−1Pn−1 = T . Motivated from [4],

we have the following definitions. We denote the unit circle of the complex

plane by T.

Definition 1.1. Let X be a complex Banach space. A projection P0 on X is

said to be n-circular projection, n ≥ 2, if there exist non trivial projections

P1, P2, . . . , Pn−1 on X such that

(a) P0 ⊕ P1 ⊕ · · · ⊕ Pn−1 = I

(b) P0 +λ1P1 + · · ·+λn−1Pn−1 is a surjective isometry for all λi ∈ T,

i = 1, 2, . . . , n− 1.

Definition 1.2. Let X be a complex Banach space. A projection P0 on X

is said to be a generalized n-circular projection, (GnP , for short) n ≥ 2, if

there exist λ1, λ2, . . . , λn−1 ∈ T \ {1}, λi, i = 1, 2, . . . , n − 1 of finite order

and non trivial projections P1, P2, . . . , Pn−1 on X such that
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2 A. B. ABUBAKER AND S DUTTA

(a) λi 6= λj for i 6= j

(b) P0 ⊕ P1 ⊕ · · · ⊕ Pn−1 = I

(c) P0 + λ1P1 + · · ·+ λn−1Pn−1 is a surjective isometry.

In the case n = 2 a projection satisfying conditions in Definition 1.1 (re-

spectively, Definition 1.2) is referred as bi-circular projection (respectively,

generalized bi-circular projection - henceforth, GBP).

Remark 1.3. Definition 1.2 seems to be a more natural one to start with

compared to the definition given in [4], if we want to put the definition of

GBP in this general set up. As we will see later in Theorem 3.2, not every

G3P is of the form I+T+T 2

3 , where T is a surjective isometry such that

T 3 = I.

Generalized bi-circular projection has been studied by many authors (see

the subsequent paragraph and references at the end of this paper). In partic-

ular, Botelho and Jamison extensively investigated the structures of GBPs

for different Banach spaces whose isometry group has concrete description

[4, 5, 6, 7, 8].

In [8], it was shown that a GBP on spaces of continuous functions on a

compact, connected and Hausdorff space, C(Ω) and C(Ω, X), is equal to

the average of the identity with an isometric reflection. The same result

was proved in [1] for C0(Ω, X), with Ω a locally compact Hausdorff space

(not necessarily connected) and X a Banach space with trivial centralizer.

Similar characterization also holds for GBPs on Lp-spaces (1 < p <∞, p 6=
2) [14], minimal norm ideal of operators [5], spaces of Lipschitz functions

[6], JB∗-triples [11] and certain Hardy spaces [12].

We note that if P +λ(I−P ) is a surjective isometry and λ ∈ T\{1} is of

infinite order then P is a bi-circular projection (see [14]). Such Projections

were called trivial in [9, 14].

It is easy to observe that any GBP is a bi-contractive projection (see [14]).

In general, any GnP is a contractive projection.

Recently in [2] the authors gave complete description of G3P s for the

space C(Ω). It was also shown in the same paper that if the convex com-

bination of three surjective isometries on C(Ω) is a projection P , then P is

either a GBP or a G3P .

We recall the definition of symmetric norm on Cn and Mm×n(C).
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Definition 1.4. A norm ‖ · ‖ on Cn is called a symmetric norm if for every

permutation matrix Π we have ‖Πx‖ = ‖x‖ for all x ∈ Cn.

A norm on Mm×n(C) is called a symmetric norm if for every A ∈
Mm×n(C), ‖UAV ‖ = ‖A‖, for all m × m unitary matrix U and for all

n× n unitary matrix V .

A symmetric norm on Mm×n(C) is also referred as unitarily invariant

norm (see [3]).

In [10] the authors described GBPs on Cn with symmetric norm and on

spaces of matrices with symmetric norms and unitary congruence invariant

norms. Much in the spirit of their work, in this note we describe G3P on

Cn and Mm×n(C) where these spaces are equipped with symmetric norm.

For our purpose we strongly use the structure of the isometry groups on

the above spaces for symmetric norms. Fortunately for us, such descriptions

are well known. For a symmetric norm on Cn, which is not a multiple

of inner product norm, any isometry T is given by T = DR where D is

a diagonal matrix with diagonal entries from the unit circle T and R is

a permutation matrix (see [13, Theorem 2.5]). For a symmetric norm on

Mm×n(C), m 6= n, which is not a multiple of the Frobenius norm (that is

the Hilbert-Schmidt norm) any isometry T is given by T (A) = UAV where

U is a unitary in Mm(C) and V is a unitary in Mn(C). If m = n then an

isometry T on Mn(C) has the form either T (A) = UAV or T (A) = UAtV

where U, V are unitary matrices in Mn(C) and At denotes the transpose of

a matrix A (see [13, Theorem 2.4]).

Remark 1.5. It follows from [10] that if a norm on Cn is multiple of inner

product norm, then any GBP or G3P is a bi-circular projection and it is

precisely an orthogonal projection.

It is also interesting to note here that the techniques used to describe

G3P s in the spaces mentioned above can be tried to describe GnP s as well,

for n > 3. However, as it is evident from the proofs in the next sections, the

number of cases to be considered become increasingly large and larger with

greater values of n.

In the sequel, whenever we mention that P0 is a G3P and write P0 +

λ1P1 + λ2P2 = T , we will always mean T , λi and Pi, i = 1, 2 are as in

Definition 1.2.
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2. Structure of G3P for symmetric norm on Cn

As described in the introduction, for a symmetric norm on Cn, any isom-

etry T is given by T = DR where D is a diagonal matrix with diagonal

entries in T and R is a permutation matrix.

We note the following simple fact. Let R be a permutation matrix such

that the permutation associated with R fixes m elements, m ≥ 0, and has k

disjoint cycles of lengths n1, n2, . . . , nk, where n = m+n1 + · · ·+nk. Let πj

be the cycle (1 2 . . . j−1 j) and Rj the permutation matrix for the cycle πnj ,

j = 1, 2, . . . , k. Then R is permutationally similar to R1⊕R2⊕· · ·⊕Rk⊕Im.

We will identify the structure of G3P for a symmetric norm which is not

a multiple of inner product norm on Cn up to permutation similarity.

We will need the following result proved in [10]. Since, we are only con-

cerned with complex field, we state it according to our need.

Theorem 2.1. [10, Proposition 3.1] Let ‖ · ‖ be a symmetric norm on Cn

which is not a multiple of the norm induced by the inner product, and P a

generalized bi-circular projection. Then one and only one of the following

holds:

(a) P is a bi-circular projection.

(b) There exist m = n − 2k, k ≥ 1 such that P is permutationally

similar to P1 ⊕ P2 ⊕ · · · ⊕ Pk ⊕ diag(p1, p2, . . . , pm) with pj ∈ {0, 1}
for all j = 1, 2, . . . ,m; and

Pi =
1

2

(
1 d1

d2 1

)
with di1di2 = 1, i = 1, . . . , k.

The following simple lemma will be used to describe the structure of G3P

on Cn and later on Mm×n(C) for a symmetric norm. We omit the proof.

Lemma 2.2. Let P0 be a G3P on a Banach space X such that P0 +λ1P1 +

λ2P2 = T . If P1 or P2 is a bi-circular projection, then so is P0.

Remark 2.3. Let P0 be a G3P on a Banach space X such that P0 +λ1P1 +

λ2P2 = T . Then

P0 =
(T − λ1I)(T − λ2I)

(1− λ1)(1− λ2)
, P1 =

(T − I)(T − λ2I)

(λ1 − 1)(λ1 − λ2)
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and

P2 =
(T − I)(T − λ1I)

(λ2 − 1)(λ2 − λ1)
.

Theorem 2.4. Let ‖ · ‖ be a symmetric norm on Cn which is not a multiple

of the norm induced by the inner product, and P0 a generalized 3-circular

projection. Then one of the following assertions holds:

(a) P0 is a bi-circular projection.

(b) P0 is a generalized bi-circular projection.

(c) There exist m ≥ 0, k ≥ 1, projections P0,i, i = 0, . . . , k such that

P0 is permutationally similar to P0,1 ⊕P0,2 ⊕ · · · ⊕P0,k ⊕P0,0 where

P0,0 = diag(p1, p2, . . . , pm) with pj ∈ {0, 1} for all j = 1, 2, . . . ,m;

and

P0,i =
1

2

(
1 di1

di2 1

)
with di1di2 = 1 or

P0,i =
1

3

 1 di1 di1di2

di2di3 1 di2

di3 di1di3 1


with di1di2di3 = 1.

Proof. Let P0 + λ1P1 + λ2P2 = T and T = DR. Let R be permutationally

similar to R1⊕R2⊕ · · · ⊕Rk ⊕ Im. We write D = D1⊕D2⊕ · · · ⊕Dk ⊕D0

accordingly. Then T will be permutationally similar to

(1)



D1R1 0 · · · 0

0 D2R2 · · · 0
...

...
. . .

...

0 · · · DkRk 0

0 0 · · · D0


We note that DiRi is a matrix of order ni. By Remark 2.3

P0 =
(T − λ1I)(T − λ2I)

(1− λ1)(1− λ2)
.

Hence, Equation (1) implies that P0 is permutationally similar to P0,1 ⊕
P0,2 ⊕ · · · ⊕ P0,k ⊕ P0,0 where

P0,i =
(DiRi − λ1I)(DiRi − λ2I)

(1− λ1)(1− λ2)
,
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i = 1, 2, . . . , k and

P0,0 =
(D0 − λ1I)(D0 − λ2I)

(1− λ1)(1− λ2)
.

We first consider the case k = 0. Then T = D0 and entries of the diagonal

matrix D0 are 1, λ1 and λ2.

Hence, P0 is a diagonal matrix whose elements are 0 or 1. This implies

that for any λ ∈ T \ {1}, P0 + λ(I − P0) is a diagonal matrix with entries 1

or λ and hence an isometry. Thus, P0 is a bi-circular projection.

We now consider k > 0. Since the eigenvalues of T are {1, λ1, λ2}, we

conclude that the eigenvalues of DiRi, for each i, and of D0 is a subset of

{1, λ1, λ2}.
Claim. If R is the permutation matrix associated with the cycle

(1 2 . . . m − 1 m) and D = diag(d1, . . . ,dm), then all the eigenvalues

of DR are distinct.

To see the claim we observe that the characteristic polynomial of DR is

λm − (d1 . . . dm) = 0. Thus, DR has m distinct eigenvalues.

From the claim we conclude that each DiRi has ni distinct eigenvalues.

Therefore, ni = 2 or ni = 3.

We consider both the cases. Let ni = 2 for some i = 1, . . . , k. Then

eigenvalues of DiRi can be {1, λ1}, {1, λ2} or {λ1, λ2}. Suppose Di =

diag(di1, di2).

(a) Suppose the eigenvalues of DiRi is {1, λ1}. Then

DiRi =

(
di1 0

0 di2

)(
0 1

1 0

)

=

(
0 di1

di2 0

)

Since tr(DiRi) = 0, we have 1 + λ1 = 0 or λ1 = −1. Further, det(DiRi) =

−di1di2 = λ1 or di1di2 = 1.

We also note P0−P1+λ2P2 = T . Thus, P0+P1+λ22P2 = (I−P2)+λ22P2 =

T 2 is an isometry. Therefore, by Theorem 2.1 we have P2 is either a bi-

circular projection or λ22 = −1.

If P2 is a bi-circular projection, then by Lemma 2.2 P0 is also a bi-circular

projection.
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If λ22 = −1, then λ2 = ±i. Further,

P0,i =
(DiRi − λ1I)(DiRi − λ2I)

(1− λ1)(1− λ2)

=
(DiRi + I)(DiRi ∓ iI)

2(1∓ i)

=
1

2

(
1 di1

di2 1

)
,

and

P0,0 =
(D0 + I)(D0 ∓ iI)

2(1∓ i)
= diag(p1,p2, . . . ,pm).

Here, pj ∈ {0, 1} for all j = 1, 2, . . . ,m.

The case when {1, λ2} is the eigenvalues of DiRi is similar.

(b) Suppose the eigenvalues of DiRi is {λ1, λ2}. Then tr(DiRi) = 0 =

λ1 + λ2. Hence, λ1 = −λ2. Moreover, det(DiRi) = −di1di2 = λ1λ2 or

di1di2 = λ21. Now, P0+λ1(P1−P2) = T . This implies that P0+λ21(P1+P2) =

T 2. By Theorem 2.1 P0 is either a bi-circular projection or a GBP.

Let ni = 3 for some i = 1, . . . , k. Then the eigenvalues of DiRi are

{1, λ1, λ2}. Suppose Di = diag(di1,di2,di3). Then

DiRi =

di1 0 0

0 di2 0

0 0 di3


0 1 0

0 0 1

1 0 0



=

 0 di1 0

0 0 di2

di3 0 0


Since tr(DiRi) = 0, we have 1 + λ1 + λ2 = 0. Thus, λ1 and λ2 are the cube

roots of identity. This implies that

P0,i =
I +DiRi + (DiRi)

2

3
,

i = 1, 2, . . . , k and

P0,0 =
I +D0 +D2

0

3
.
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We conclude

P0,i =
1

3

 1 di1 di1di2

di2di3 1 di2

di3 di1di3 1

 and P0,0 = diag(p1,p2, . . .pm).

Here, pj ∈ {0, 1} for all j = 1, 2, . . . ,m.

Moreover, det(DiRi) = di,1di,2di,3 = 1.

The proof is complete. �

Remark 2.5. (1) In the case ni = 2 and eigenvalues of DiRi are {1, λ1}
(or {1, λ2}), P0,i appearing in the proof is a GBP. In the case ni = 3,

P0,i is a G3P .

(2) For a G3P P0 it may happen that ni = 2 for all i = 1, . . . , k. In this

case, P0 will be a GBP and in our proof we recover the structure of

GBP described in Theorem 2.1.

3. Structure of G3P for symmetric norms on Mm×n(C)

For a symmetric norm on Mm×n(C), m 6= n, any isometry is given by

T (A) = UAV where U ∈ Mm(C) and V ∈ Mn(C) are unitary matrices. If

m = n then any isometry is given by either T (A) = UAV or T (A) = UAtV

where U, V ∈ Mn(C) are unitary matrices. For convenience of reading we

separate out the cases where isometries are of the form T (A) = UAV and

T (A) = UAtV .

Remark 3.1. Let us assume that U has eigenvalues u1, . . . , um and V has

eigenvalues v1, . . . , vn. If T (A) = UAV then identifying Mm×n(C) as Rm ⊗
Rn we see that T (x ⊗ yt) = (Ux) ⊗ (ytV ). Thus, T has eigenvalues uivj ,

i = 1, 2, . . . ,m; j = 1, 2, . . . , n. Without loss of generality we may assume

that u1 = v1 = 1. Therefore, the spectrum of U and V is a subset of

{1, λ1, λ2}. (This will determine P0 up to a multiple of u1v1).

Theorem 3.2. Let ‖ · ‖ be a symmetric norm on Mm×n(C) and P0 a gener-

alized 3-circular projection such that the isometry associated with it is of the

form A 7−→ UAV for some U ∈Mm(C) and V ∈Mn(C), U, V are unitary

matrices. Then one and only one of the following assertions holds.

(a) P0 is a bi-circular projection. In this case, there exist R ∈Mn(C)

with R = R∗ = R2 such that P0(A) = AR or there exist S ∈Mm(C)

with S = S∗ = S2 such that P0(A) = SA.
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(b) Either P1 or P2 is a generalized bi-circular projection. If Pi is a

generalized bi-circular projection, i = 1, 2, then

P0 =
λiI

2(λi − 1)
+

T

1− λ2i
+

λiT
q

2(1 + λi)
,

where q is the order of λj, j = 1, 2 and j 6= i.

(c) There exist Ri = R∗
i = R2

i in Mm(C) and Si = S∗
i = S2

i in Mn(C)

such that

P0(A) =

p−1∑
i=0

RiASi,

where

(i) i = 0, 1, . . . , p− 1 and p is an odd integer ≥ 3,

(ii) RiRj = 0, SiSj = 0 for i 6= j,

(iii)

p−1∑
i=0

Ri = I and

p−1∑
i=0

Si = I.

Proof. Suppose that P0 is a G3P and P0 +λ1P1 +λ2P2 = T . Since we have

assumed that u1 = v1 = 1 (see Remark 3.1) we get that spectra of U and V

are any one of the following sets:

{1}, {1, λ1}, {1, λ2} or {1, λ1, λ2}.

So we have following three exclusive cases:

Case I

Suppose the spectrum of U is {1}. Therefore, the spectrum of V will be

{1, λ1, λ2}. In this case, U = I and T (A) = AV . From Remark 2.3, we have

P0A =
(T − λ1I)(T − λ2I)A

(1− λ1)(1− λ2)
= AR,

where

R =
(V − λ1I)(V − λ2I)

(1− λ1)(1− λ2)
.

It is routine to verify that R = R∗. Since P0 is a projection it also follows

that R2 = R.
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We now show that P0 is indeed a bi-circular projection. Let µ ∈ T \ {1}.
We have,

[P0 + µ(I − P0)]A = P0A+ µ(A− P0A)

= AR+ µ(A−AR)

= A[R+ µ(I −R)]

= AW,

where W = R+ µ(I −R). It is now easy to verify that W ∗W = WW ∗ = I.

Therefore, P0 is a bi-circular projection.

Similarly, if the spectrum of V is {1} we will get P0(A) = SA for some

S ∈Mm(C) with S = S∗ = S2.

Hence, assertion (a) is proved

Case II

Suppose the spectrum of U is {1, λ1}.
So, the choices of spectrum of V are {1, λ1}, {1, λ2} or {1, λ1, λ2}. We

consider following three possible subcases here.

(A) If the spectrum of V is {1, λ1} then T will have spectrum {1, λ1, λ21}.
This implies that λ21 = λ2.

Let p and q be the order of λ1 and λ2 respectively. Then we have λ2q1 =

λq2 = 1 and λp2 = λ2p1 = 1. This implies that p divides 2q and q divides p.

Thus, 2q = k1p and p = k2q for some positive integers k1 and k2. Hence, we

have k1k2 = 2. So, either k1 = 1, k2 = 2 or k1 = 2, k2 = 1.

If k1 = 1 and k2 = 2 we get p = 2q.

If k1 = 2 and k2 = 1 we get p = q.

(1) Suppose p = 2q. Then we have

T q = P0 + λq1P1 + λq2P2

= P0 + λq1P1 + P2.

This implies that P1 is a GBP. By [10, Proposition 4.1] we get that P1 is

either a bi-circular projection or P1 is a proper GBP (not bi-circular) with

λq1 = −1.
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If P1 is a bi-circular projection, then by Lemma 2.2 we conclude that P0

is also a bi-circular projection. Thus, we get assertion (a) back.

If P1 is not a bi-circular projection, then λq1 = −1. Since λ21 = λ2, we

consider the following two cases:

Suppose λ1 =
√
λ2, then we get (λ2)

q/2 = −1.

Suppose λ1 = −
√
λ2, then we get (−1)q(λ2)

q/2 = −1. This shows that

(λ2)
q/2 = −1, otherwise if (λ2)

q/2 = 1 then we will get λq1 = 1, which is a

contradiction.

So, in both cases we have (λ2)
q/2 = −1. Since q = p/2 we also have

λ
p/2
1 = −1.

For the form of P0 we consider the following three equations,

P0 − P1 + P2 = T q

P0 + λ1P1 + λ2P2 = T

P0 + P1 + P2 = I.

Eliminating P1 and P2 we get

P0 =
λ1I

2(λ1 − 1)
+

T

1− λ21
+

λ1T
q

2(1 + λ1)
.

Hence, assertion (b) is proved.

(2) Suppose p = q. Since λ21 = λ2, we have λ1 = ±
√
λ2.

We first claim that λ1 6= −
√
λ2. To see this, if λ1 = −

√
λ2 then we have

λp1 = (−
√
λ2)

p = 1 or (−1)p(λ2)
p/2 = 1. This shows that p is odd, otherwise

(λ2)
p/2 = 1, a contradiction because the order of λ2 is p. Hence, we get

(λ2)
p/2 = −1. It follows that λp1 = −1, a contradiction since the order of λ1

is p.

Thus we must have λ1 =
√
λ2. Hence, λp1 = (

√
λ2)

p = (λ2)
p/2 = 1. This

implies that p is odd. As the order of λ1 is p, we have Up = I and V p = I.

Further, for i = 0, 1, . . . , p− 1, we have

P0 + λi1P1 + λi2P2 = T i.

Adding these equations, we get
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pP0 + (

p−1∑
i=0

λi1)P1 + (

p−1∑
i=0

λi2)P2 = I + T + T 2 + · · ·+ T p−1.

Since

p−1∑
i=0

λi1 =

p−1∑
i=0

λi2 = 0, we obtain

P0 =
I + T + T 2 + · · ·+ T p−1

p
.

We now define

Ri =
1

p

p−1∑
j=0

λij1 U
j and Si =

1

p

p−1∑
j=0

λ1
ij
V j ,

where i = 0, 1, . . . , p−1. It is straightforward to verify that Ri = R∗
i = R2

i ,

Si = S∗
i = S2

i , for i 6= j; RiRj = 0, SiSj = 0 and

p−1∑
i=0

Ri = I,

p−1∑
i=0

Si = I.

Therefore, P0 will be of the form

P0(A) =

p−1∑
i=0

RiASi

and assertion (c) is proved.

We can also get the form of P1 and P2. We first observe that Pj , j = 1, 2,

will have the form

Pj =
I + λjT + λj

2
T 2 + · · ·+ λj

p−1
T p−1

p
.

But λj = λp−1
j and λ21 = λ2, so we get

P1(A) =

p−1∑
i=0

RiAS(i+1)(mod p).

Similarly,

P2(A) =

p−1∑
i=0

RiAS(i+2)(mod p).

(B) If the spectrum of V is {1, λ2}, then T will have spectrum

{1, λ1, λ2, λ1λ2}. This implies that λ1λ2 = 1 and hence λ1 and λ2 are of the

same order. Now,

T = P0 + λ1P1 + λ1P2

=⇒ λ1T = P2 + λ1P0 + λ21P1.
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Because λ1T is again an isometry, we are reduced to Case II, part (A) (2).

So, P2 will be of the form P2(A) =
∑p−1

i=0 RiASi, where Ri and Si are as in

assertion (c).

Proceeding in the same way as above, we can easily obtain the form of

P0.

Therefore, we get back assertion (c).

(C) If the spectrum of V is {1, λ1, λ2}, then T will have spectrum

{1, λ1, λ2, λ1λ2, λ21}. This implies that λ1λ2 = 1 and λ21 = λ2. Therefore, we

have λ31 = λ32 = 1. Here, we get assertion (c) with p = 3.

Case III The spectrum of U is {1, λ2}. This case is symmetric to Case

II.

Case IV

Suppose that the spectrum of U is {1, λ1, λ2}.
(1) If the spectrum of V is {1}, then V = I. We proceed in the same

way as in Case I to get S ∈ Mm(C) such that S = S∗ = S2 and

P0A = SA. Thus, P0 is a bi-circular projection.

(2) If the spectrum of V is {1, λ1} or {1, λ2}, then we proceed exactly

as in Case II above.

(3) If the spectrum of V is {1, λ1, λ2}, then the spectrum of T will

be {1, λ1, λ2, λ1λ2, λ21, λ22}. Thus, we have λ1λ2 = 1, λ21 = λ2 and

λ22 = λ1. Hence, 1 = λ1λ2 = λ1λ
2
1 = λ31. Similarly, we have λ32 = 1.

Thus, we get assertion (c) for p = 3.

This completes the proof of the Theorem. �

Remark 3.3. (1) In case (b) of Theorem 3.2, we do not know if P0

is itself a GBP. However as the proof shows, in this case we do have

λj
q
2 = −1 and λqi = −1.

(2) Condition (c) in Theorem 3.2 is sufficient for p = 3. To see this,

define

P1(A) = R0AS1 +R1AS2 +R2AS0,

P2(A) = R0AS2 +R1AS0 +R2AS1,

U = R0 + ωR1 + ω2R2 and

V = S0 + ω2S1 + ωS2, where ω is cube root of unity.
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It can be easily verified that P1 and P2 are projections. Further,

for i 6= j; PiPj = 0 and P0+P1+P2 = I. Also, U and V are unitary

matrices such that (P0 + ω2P1 + ωP2)A = UAV .

This implies that P0 is a generalized 3-circular projection.

We now consider the case m = n and the associated isometry T is of the

form T (A) = UAtV for some unitary matrices U and V in Mn(C).

Let P0 + λ1P1 + λ2P2 = T and T (A) = UAtV . Then we have

T 2(A) = P0(A) + λ21P1(A) + λ22P2(A) = UV tAU tV.

Let X = UV t and Y = U tV . So, T 2(A) = XAY , where X and Y are unitary

matrices. Following the same idea of the proof of Theorem 3.2 above, we

get the following result.

Theorem 3.4. Let ‖·‖ be a symmetric norm on Mn(C) and P0 a generalized

3-circular projection such that the isometry associated with it is of the form

A 7−→ UAtV for some unitary matrices U and V in Mn(C). Then one and

only one of the following holds:

(a) P0 is a bi-circular projection.

(b) P1 or P2 is a generalized bi-circular projection. If Pi, i = 1, 2, is

a generalized bi-circular projection, then P0 is of the form

A 7−→ λ2iA

2(λ2i − 1)
+
UV tAU tV

1− λ4i
+
λ2i (UV

t)qA(U tV )q

2(1 + λ2i )
,

where q is the order of λ2j , j = 1, 2 and j 6= i.

(c) There exist Ri = R∗
i = R2

i and Si = S∗
i = S2

i in Mn(C) such that

P0(A) =

p−1∑
i=0

RiASi,

where

(i) i = 0, 1, . . . , p− 1 and p is an odd integer,

(ii) RiRj = 0, SiSj = 0 for i 6= j,

(iii)

p−1∑
i=0

Ri = I and

p−1∑
i=0

Si = I
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