Indian Institute of Information Technology Allahabad
 Univariate and Multivariate Calculus
 C3 End Semester Examination - Tentative Marking Scheme

Program: B.Tech. $2^{\text {nd }}$ Semester
Duration: 2 hours
Full Marks: 55
Date: June 19, 2023
Time: 4:30 PM - 06:30 PM

Important Instructions:

1. Answer all questions. Writing on question paper is not allowed.
2. Attempt all the parts of questions 2 at the same place. Parts done separately will not be graded.
3. Number the pages of your answer booklet. On the back of the front page of your answer booklet, make a table (as shown below) to indicate the page number in which respective questions have been answered. If you did not attempt a particular question, write down NA.

Question No.	1	2	3	4	5	6	7	8
Page No.								

4. Use of any electronic gadgets is not allowed.
5. This question paper contains two pages.
6. Let $f:[0,1] \rightarrow \mathbb{R}$ be a function defined as

$$
f(x)= \begin{cases}\frac{1}{2^{n}} & \frac{1}{2^{n+1}}<x \leq \frac{1}{2^{n}} \\ 0 & x=0\end{cases}
$$

where $n=0,1,2, \ldots$. Show that f is integrable and find its integral value.
Solution. It is clear that f is bounded and increasing on [0, 1]. Hence f is integrable. [1] By the fundamental theorem of calculus, the function $F:[0,1] \rightarrow \mathbb{R}$ defined by

$$
F(x)=\int_{x}^{1} f(t) d t
$$

is continuous. So, if $x_{n} \rightarrow 0$, then $F\left(x_{n}\right) \rightarrow F(0)$ that is,

$$
\begin{equation*}
F(0)=\int_{0}^{1} f(t) d t=\lim _{n \rightarrow \infty} \int_{x_{n}}^{1} f(t) d t \tag{2}
\end{equation*}
$$

Consider $x_{n}=\frac{1}{2^{n}}$. Then

$$
\begin{align*}
F\left(\frac{1}{2^{n}}\right) & =\int_{\frac{1}{2^{n}}}^{1} f(t) d t \\
& =\int_{\frac{1}{2^{n}}}^{\frac{1}{2^{n-1}}} f(t) d t+\int_{\frac{1}{2^{n-1}}}^{\frac{1}{2^{n-2}}} f(t) d t+\cdots+\int_{\frac{1}{2}}^{1} f(t) d t \\
& =\frac{1}{2}\left\{1+\frac{1}{2^{2}}+\cdots+\left(\frac{1}{2^{2}}\right)^{n-1}\right\} \\
& =\frac{2}{3}\left(1-\frac{1}{4^{n}}\right) \tag{2}
\end{align*}
$$

Hence,

$$
\begin{equation*}
\int_{0}^{1} f(t) d t=\lim _{n \rightarrow \infty} \int_{\frac{1}{2^{n}}}^{1} f(t) d t=\frac{2}{3} \tag{1}
\end{equation*}
$$

2. Consider the function

$$
f(x, y)= \begin{cases}\frac{3 x^{2} y-y^{3}}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}
$$

Answer the following questions.
(a) Discuss the continuity of f at $(0,0)$.

Solution.

$$
\begin{equation*}
|f(x, y)-f(0,0)|=\left|\frac{y\left(3 x^{2}-y^{2}\right)}{x^{2}+y^{2}}\right| \leq\left|\frac{y\left(3 x^{2}+3 y^{2}\right)}{x^{2}+y^{2}}\right|=|3 y| \rightarrow 0 \text { as }(x, y) \rightarrow 0 \tag{2}
\end{equation*}
$$

Thus, f is continuous at $(0,0)$.
(b) Is f_{y} continuous at $(0,0)$.

Solution. $f_{y}(x, 0)=\lim _{h \rightarrow 0} \frac{f(x, h)-f(x, 0)}{h}=\lim _{h \rightarrow 0} \frac{3 x^{2}-h^{2}}{x^{2}+h^{2}}=3$.
$f_{y}(0,0)=\lim _{h \rightarrow 0} \frac{f(0, h)-f(0,0)}{h}=-1$.
Since $f_{y}(x, 0) \nrightarrow f_{y}(0,0)$ as $x \rightarrow 0, f_{y}$ is not continuous at $(0,0)$.
(c) Find the directional derivative of f at $(0,0)$ in the direction of $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.

Solution. The directional derivative of f at $(0,0)$ in the direction of $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ is

$$
\begin{align*}
D_{\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)} f(0,0) & =\lim _{t \rightarrow 0} \frac{f\left((0,0)+t\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)\right)-f(0,0)}{t} \tag{1}\\
& =\lim _{t \rightarrow 0} \frac{\frac{t^{3}}{\sqrt{2}}}{t^{3}}=\frac{1}{\sqrt{2}} \tag{1}
\end{align*}
$$

(d) Discuss the differentiability of f at $(0,0)$.

Solution. $f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=0$.
Let $H=(h, k) \in \mathbb{R}^{2}$. Then the error function is

$$
\begin{equation*}
\epsilon(H)=\frac{f(h, k)-f(0,0)-h f_{x}(0,0)-k f_{y}(0,0)}{\|H\|}=\frac{4 h^{2} k}{\left(h^{2}+k^{2}\right)^{\frac{3}{2}}} . \tag{1}
\end{equation*}
$$

Take $h=k$. Then $\epsilon(h, h)=\sqrt{2} \nrightarrow 0$ as $h \rightarrow 0$. Therefore, f is not differentiable at $(0,0)$.
Alternative Solution. If f is differentiable at (a, b), then the directional derivative of f at (a, b) in the direction of a unit vector $\left(u_{1}, u_{2}\right)$ is
$D_{\left(u_{1}, u_{2}\right)} f(a, b)=\left(f_{x}(a, b), f_{y}(a, b)\right) . U$.
Now, $f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=0$.
Since

$$
\begin{equation*}
D_{\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)} f(0,0)=\frac{1}{\sqrt{2}}, \tag{1}
\end{equation*}
$$

but

$$
\begin{equation*}
\left(f_{x}(0,0), f_{y}(0,0)\right) \cdot\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=(0,-1) \cdot\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=-\frac{1}{\sqrt{2}}, \tag{2}
\end{equation*}
$$

f is not differentiable at $(0,0)$.
3. Let

$$
f(x, y)=x^{2}+2 b x y+y^{2}, b \in \mathbb{R} .
$$

Find all the critical points and classify them as point of local maxima, local minima or saddle point.
Solution. The partial derivatives of f w.r.t. x and y are given by

$$
f_{x}(x, y)=2 x+2 b y \text { and } f_{y}(x, y)=2 b x+2 y
$$

respectively.
The critical points are $(0,0)$,
$(x, x), x \in \mathbb{R}$ when $b=-1$ and
$(x,-x), x \in \mathbb{R}$ when $b=1$.
Now, $f_{x x}(x, y)=2, f_{y y}(x, y)=2, f_{x y}(x, y)=2 b$.
The Discriminant of f at (x, y) is $\Delta f(x, y)=4-4 b^{2}$.
At $(0,0), f_{x x}(0,0)>0, \Delta f(0,0)>0$ if and only if $b^{2}<1$.
Thus, if $b^{2}<1,(0,0)$ is a point of minima.
If $b^{2}>1,(0,0)$ is a saddle point.
If $b^{2}=1,(x, x)$ and $(x,-x)$ are critical points and $\Delta(x, \pm x)=0$, then the test is inconclusive.
If $b^{2}=1$, then $f(x, \pm x)=0 \leq f(x, y)=(x-y)^{2}, \forall x, y \in \mathbb{R}$.
This implies that (x, x) and $(x,-x)$ are points of local minima.
4. The region bounded by the curve $y=\sqrt{x}$, the x-axis, and the line $x=4$ is revolved about the y-axis to generate a solid. Find the volume of the solid using Shell method.
Solution. Using Shell method, the volume of the solid generated is given by

$$
\begin{equation*}
V=\int_{a}^{b} 2 \pi(\text { shell radius })(\text { shell height }) d x \tag{1}
\end{equation*}
$$

Shell Radius $=x$, Shell Height $=\sqrt{x}$.
Thus,

$$
\begin{equation*}
V=\int_{0}^{4} 2 \pi x(\sqrt{x}) d x=2 \pi \int_{0}^{4} x^{3 / 2} d x=\frac{128 \pi}{5} . \tag{1+1}
\end{equation*}
$$

$$
\begin{equation*}
[1+1+1] \tag{4}
\end{equation*}
$$

5. Find the length of the curve $r=1-\cos \theta$.

Solution. The length of the curve in polar coordinates is given by

$$
\begin{equation*}
L=\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta \tag{1}
\end{equation*}
$$

It follows that

$$
L=\int_{0}^{2 \pi} \sqrt{2-2 \cos \theta} d \theta=8
$$

$$
[1+1+1]
$$

6. The curve

$$
x=\cos t, \quad y=1+\sin t, \quad 0 \leq t \leq 2 \pi .
$$

is revolved about the x-axis. Using this parametrization, find the area of the surface generated. [4]
Solution. The surface area is given by

$$
\begin{equation*}
S=\int_{a}^{b} 2 \pi y \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \tag{1}
\end{equation*}
$$

This implies that

$$
S=\int_{0}^{2 \pi} 2 \pi(1+\sin t) \sqrt{(-\sin t)^{2}+(\cos t)^{2}} d t=2 \pi \int_{0}^{2 \pi}(1+\sin t) d t=4 \pi^{2} . \quad[1+1+1]
$$

7. Evaluate the integral

$$
\begin{equation*}
\int_{0}^{2}\left(\int_{\frac{y}{2}}^{1} e^{x^{2}} d x\right) d y \tag{5}
\end{equation*}
$$

Solution. The region D of integration (see Figure 2) is given by $D=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq\right.$ $\left.y \leq 2, \frac{y}{2} \leq x \leq 1\right\}$. Since the integral $\int_{y / 2}^{1} e^{x^{2}} d x$ cannot be evaluated in terms of simple known
functions, we will use Fubini's theorem and change the order of integration. The region of integration becomes $D=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq x \leq 1,0 \leq x \leq 2 x\right\}$ (see Figure 2). Thus,

$$
\iint_{D} f(x, y) d y d x=\int_{0}^{1}\left(\int_{0}^{2 x} e^{x^{2}} d y\right) d x=e-1
$$

8. Let $D=\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq 4 a^{2}, z \geq a\right\}$. Evaluate the integral

$$
\iiint_{D} \frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}} d x d y d z
$$

using spherical coordinates.
Solution. If we allow ϕ to vary independently, then ϕ varies from 0 to $\frac{\pi}{3}$ (see Figure 2). [1+1] For fixed ϕ and ρ, θ to varies from 0 to 2π.
For a fixed ϕ and θ, ρ varies from $a \sec \phi$ to $2 a$ (see Figure 1).
Therefore, the integral is

$$
\begin{align*}
& \int_{0}^{\frac{\pi}{3}} \int_{0}^{2 \pi} \int_{a \sec \phi}^{2 a} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi)|J(\rho, \theta, \phi)| d \rho d \theta d \phi \\
& =\int_{0}^{\frac{\pi}{3}} \int_{0}^{2 \pi} \int_{a \sec \phi}^{2 a} \frac{\cos \phi}{\rho^{2}} \rho^{2} \sin \phi d \rho d \theta d \phi \tag{1+1}\\
& =2 \pi \int_{0}^{\frac{\pi}{3}}(2 a \sin \phi \cos \phi-a \sin \phi) d \phi=\frac{\pi a}{2} . \tag{2}
\end{align*}
$$

Figure 1

