Indian Institute of Information Technology Allahabad Univariate and Multivariate Calculus C2 Quiz

Program: B.Tech. 2nd Semester Duration: **45 minutes** Date: May 24, 2023

Full Marks: 20 Time: 09:00 AM - 09:45 AM

Attempt all questions.

1. Sketch the graph of the function

$$f(x) = \frac{x^2 + 4}{2x}$$

after finding the intervals of decrease/increase, intervals of concavity/convexity, points of local minima/local maxima, points of inflection, and asymptotes.

Solution:
$$f'(x) = \frac{1}{2} - \frac{2}{x^2} = \frac{x^2 - 4}{2x^2}, f''(x) = \frac{4}{x^3}$$
.

The critical points occur at x = 2, -2 where f'(x) = 0.

Since f''(-2) < 0 and f''(2) > 0, we see from the second derivative test that a relative maximum occurs at x = -2 with f(-2) = -2, and a relative minimum occurs at x = 2 with f(2) = 2. [1+1]

On the interval $(-\infty, -2)$, the derivative f' is positive because $x^2 - 4 > 0$ so the graph is increasing; on the interval (-2, 0) the derivative is negative and the graph is decreasing. Similarly, the graph is decreasing on (0, 2) and increasing on $(2, \infty)$. [1+1+1+1]

The graph is concave on the interval $(-\infty, 0)$ as f''(x) < 0 whenever x < 0 and convex on the interval $(0, \infty)$ as f''(x) > 0 whenever x > 0. [1+1] Since 0 is not in the domain, there is no points of inflection. [1]

Now, $f(x) = \frac{x^2+4}{2x} = \frac{x}{2} + \frac{2}{x}$, $\lim_{x \to 0^+} \left(\frac{x}{2} + \frac{2}{x}\right) = +\infty$ and $\lim_{x \to 0^-} \left(\frac{x}{2} + \frac{2}{x}\right) = -\infty$. so the y- axis is a vertical asymptote. [1]

Also, as $x \to \infty$ or $x \to -\infty$, the graph of f(x) approaches the line $y = \frac{x}{2}$. Thus, $y = \frac{x}{2}$ is an oblique asymptote. [1].

2. Let $f : [a, b] \to \mathbb{R}$ be a function and n be a non-negative integer. Suppose $f^{(n+1)}$ exists and is identically zero on [a, b]. Show that f is a polynomial function of degree less than or equal to n. [2]

Proof. Assume that $f : [a, b] \to \mathbb{R}$ is such that $f^{(n)}$ is continuous on [a, b] and $f^{(n+1)}(x)$ exists on (a, b). Fix $x_0 \in [a, b]$. Then Taylor's theorem says, for each $x \in [a, b]$ with $x \neq x_0$, there exists c between x and x_0 such that

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \ldots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(x - x_0)^{n+1}.$$

[12]

[1]

Figure 1: Graph for Question 1

Take any $x \in (a, b]$. Apply Taylor's theorem for f on [a, x] and use $f^{(n+1)}(c) = 0$, we get that

$$f(x) = f(a) + f'(a)(x-a) + \frac{f^{(2)}(a)}{2!}(x-a)^2 + \ldots + \frac{f^{(n)}(a)}{n!}(x-a)^n,$$

which is a polynomial of degree $\leq n$.

- 3. Discuss the convergence/divergence of the following series: [3+3]
 - (a) $\sum_{n=1}^{\infty} e^{-n^2}$. (b) $\sum_{n=1}^{\infty} \sin\left(\frac{(-1)^n}{n^p}\right), p > 0.$

Solution:

- (a) Observe that $\frac{1}{e^{n^2}} \leq \frac{1}{n^2}$, for all $n \in \mathbb{N}$. [1] Since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is a convergent series, by comparison test, $\sum_{n=1}^{\infty} e^{-n^2}$ is also convergent. [1+1]
- (b) $\sin\left(\frac{(-1)^n}{n^p}\right) = (-1)^n \sin\left(\frac{1}{n^p}\right).$ [1]

Also,
$$\sin\left(\frac{1}{n^p}\right)$$
 is a decreasing sequence. [1]

Since $\sin\left(\frac{1}{n^p}\right)$ coverges to 0, by Leibnitz test, the series is convergent. [1]