Indian Institute of Information Technology Allahabad Univariate and Multivariate Calculus C2 Quiz

Program: B.Tech. $2^{\text {nd }}$ Semester
Duration: 45 minutes
Full Marks: 20
Date: May 24, 2023
Time: 09:00 AM - 09:45 AM

Attempt all questions.

1. Sketch the graph of the function

$$
\begin{equation*}
f(x)=\frac{x^{2}+4}{2 x} \tag{12}
\end{equation*}
$$

after finding the intervals of decrease/increase, intervals of concavity/convexity, points of local minima/local maxima, points of inflection, and asymptotes.
Solution: $f^{\prime}(x)=\frac{1}{2}-\frac{2}{x^{2}}=\frac{x^{2}-4}{2 x^{2}}, f^{\prime \prime}(x)=\frac{4}{x^{3}}$.
The critical points occur at $x=2,-2$ where $f^{\prime}(x)=0$.
Since $f^{\prime \prime}(-2)<0$ and $f^{\prime \prime}(2)>0$, we see from the second derivative test that a relative maximum occurs at $x=-2$ with $f(-2)=-2$, and a relative minimum occurs at $x=2$ with $f(2)=2$.

On the interval $(-\infty,-2)$, the derivative f^{\prime} is positive because $x^{2}-4>0$ so the graph is increasing; on the interval $(-2,0)$ the derivative is negative and the graph is decreasing. Similarly, the graph is decreasing on $(0,2)$ and increasing on $(2, \infty)$.

The graph is concave on the interval $(-\infty, 0)$ as $f^{\prime \prime}(x)<0$ whenever $x<0$ and convex on the interval $(0, \infty)$ as $f^{\prime \prime}(x)>0$ whenever $x>0$.
Since 0 is not in the domain, there is no points of inflection.
Now, $f(x)=\frac{x^{2}+4}{2 x}=\frac{x}{2}+\frac{2}{x}, \lim _{x \rightarrow 0^{+}}\left(\frac{x}{2}+\frac{2}{x}\right)=+\infty$ and $\lim _{x \rightarrow 0^{-}}\left(\frac{x}{2}+\frac{2}{x}\right)=-\infty$. so the y - axis is a vertical asymptote.
Also, as $x \rightarrow \infty$ or $x \rightarrow-\infty$, the graph of $f(x)$ approaches the line $y=\frac{x}{2}$. Thus, $y=\frac{x}{2}$ is an oblique asymptote.
2. Let $f:[a, b] \rightarrow \mathbb{R}$ be a function and n be a non-negative integer. Suppose $f^{(n+1)}$ exists and is identically zero on $[a, b]$. Show that f is a polynomial function of degree less than or equal to n.

Proof. Assume that $f:[a, b] \rightarrow \mathbb{R}$ is such that $f^{(n)}$ is continuous on $[a, b]$ and $f^{(n+1)}(x)$ exists on (a, b). Fix $x_{0} \in[a, b]$. Then Taylor's theorem says, for each $x \in[a, b]$ with $x \neq x_{0}$, there exists c between x and x_{0} such that
$f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\ldots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}+\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1}$.

Figure 1: Graph for Question 1
Take any $x \in(a, b]$. Apply Taylor's theorem for f on $[a, x]$ and use $f^{(n+1)}(c)=0$, we get that

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{(2)}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

which is a polynomial of degree $\leq n$.
3. Discuss the convergence/divergence of the following series:
(a) $\sum_{n=1}^{\infty} e^{-n^{2}}$.
(b) $\sum_{n=1}^{\infty} \sin \left(\frac{(-1)^{n}}{n^{p}}\right), p>0$.

Solution:

(a) Observe that $\frac{1}{e^{n^{2}}} \leq \frac{1}{n^{2}}$, for all $n \in \mathbb{N}$.

Since $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is a convergent series, by comparison test, $\sum_{n=1}^{\infty} e^{-n^{2}}$ is also convergent.
(b) $\sin \left(\frac{(-1)^{n}}{n^{p}}\right)=(-1)^{n} \sin \left(\frac{1}{n^{p}}\right)$.

Also, $\sin \left(\frac{1}{n^{p}}\right)$ is a decreasing sequence.
Since $\sin \left(\frac{1}{n^{p}}\right)$ coverges to 0 , by Leibnitz test, the series is convergent.

