Indian Institute of Information Technology Allahabad
 Univariate and Multivariate Calculus
 C1 Review Test Tentative Marking Scheme

Program: B.Tech. $2^{\text {nd }}$ Semester
Duration: 1 hour 15 minutes
Full Marks: 35
Date: May 03, 2023
Time: 6:15 PM - 07:30 PM

Important Instructions:

1. Answer all questions. Writing on question paper is not allowed.
2. Attempt all the parts of questions 1 at the same place. Parts done separately will not be graded.
3. Number the pages of your answer booklet. On the back of the front page of your answer booklet, make a table (as shown below) to indicate the page number in which respective questions have been answered. If you did not attempt a particular question, write down NA.

Question No.	1	2	3	4	5	6	7
Page No.							

4. Use of any electronic gadgets is not allowed.
5. Discuss the convergence/divergence of the following sequences, and find the limit.
(a) $x_{n}=\left(\sqrt{2}-2^{\frac{1}{3}}\right)\left(\sqrt{2}-2^{\frac{1}{5}}\right) \cdots\left(\sqrt{2}-2^{\frac{1}{2 n+1}}\right)$.

Solution. We observe that for $n \in \mathbb{N}, 2^{\frac{1}{2 n+1}}>1$, which implies that $\sqrt{2}-2^{\frac{1}{2 n+1}}<$ $\sqrt{2}-1$.
Thus, $0<x_{n}<(\sqrt{2}-1)^{n}$. By Sandwich theorem, $x_{n} \rightarrow 0$.
(b) $x_{n}=(n!)^{1 / n}$.

Solution. Let $r>0$ be given. Since $\frac{r^{n}}{n!} \rightarrow 0$, for $\varepsilon=1$, there exists $N \in \mathbb{N}$ such that $\frac{r^{n}}{n!}<1$ whenever $n \geq N$.
That is, $r^{n}<n$! or $(n!)^{1 / n}>r$ for $n \geq N$. Therefore, $(n!)^{1 / n} \rightarrow \infty$.
(c) $x_{1}=1$ and $x_{n+1}=\frac{4+3 x_{n}}{3+2 x_{n}}$.

Solution. Note that $x_{2}>x_{1}$. Since $x_{n+1}-x_{n}=\frac{x_{n}-x_{n-1}}{\left(3+2 x_{n}\right)\left(3+2 x_{n-1}\right)}$, by induction $\left(x_{n}\right)$ is increasing.
Moreover, $x_{n+1}=1+\frac{1+x_{n}}{3+2 x_{n}} \leq 2$. Thus, $\left(x_{n}\right)$ is bounded above, and hence convergent. [2]
The limit is $\sqrt{2}$.
2. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be two functions such that $g(x)>0$ for all $x \in[a, b], x \neq c, \lim _{x \rightarrow c} f(x)>$ 0 and $\lim _{x \rightarrow c} g(x)=0$. Prove that $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\infty$. (Hint: Prove using $\epsilon-\delta$ definition of limits)

Solution. Let $r>0$ and $\lim _{x \rightarrow c} f(x)=A>0$. There exists $\delta_{1}, \delta_{2}>0$, such that

$$
\begin{equation*}
0<|x-c|<\delta_{1} \Longrightarrow|f(x)-A|<A / 2 \text { or } f(x)>A / 2 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
0<|x-c|<\delta_{2} \Longrightarrow g(x)<A / 2 r \text { or } \frac{1}{g(x)}>2 r / A \tag{2}
\end{equation*}
$$

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Then

$$
\begin{equation*}
0<|x-c|<\delta \Longrightarrow \frac{f(x)}{g(x)}>r \tag{2}
\end{equation*}
$$

Therefore, $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\infty$.
3. Does there exist a continuous function from $[0,1]$ onto $(0,1)$. Justify your answer.

Solution. No. If f is a continuous function from $[0,1]$ onto $(0,1)$, then f is bounded and attains its bounds, i.e., there exists $c \in[0,1]$ such that $f(c)=\inf \{f(x): x \in[0,1]\}=$ $\inf (0,1)=0$. This is impossible.
4. Suppose $f:[0, \infty) \rightarrow \mathbb{R}$ is continuous and $\lim _{x \rightarrow \infty} f(x)$ exists. Show that f is bounded. [5]

Solution. Suppose $\lim _{x \rightarrow \infty} f(x)=\ell$. Then there exists $r \in \mathbb{R}$ such that $|f(x)-\ell|<1$ for all $x \geq r$.
Then $|f(x)| \leq 1+\ell$ for all $x \geq r$, i.e., f is bounded on $\{x: x \geq r\}$.
Since f is continuous, it is bounded on $[0, r]$.
Therefore, f is bounded on $[0, \infty]$.
5. Find the number of real solutions of the equation

$$
\begin{equation*}
x^{17}-e^{-x}+5 x-\cos x=0 . \tag{4}
\end{equation*}
$$

Solution. Since $f(2)>0$ and $f(-2)<0$, by IVP f has at least one solution.
Since $f^{\prime}(x)>0$ for all $x \in \mathbb{R}$, Rolle's theorem implies that f has exactly one solution.
6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable at $x=1, f(1)=1$ and $k \in \mathbb{N}$. Show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n\left[f\left(1+\frac{1}{n}\right)+f\left(1+\frac{2}{n}\right)+\cdots+f\left(1+\frac{k}{n}\right)-k\right]=\frac{k(k+1)}{2} f^{\prime}(1) \tag{4}
\end{equation*}
$$

Solution. $\lim _{n \rightarrow \infty} n\left[f\left(1+\frac{1}{n}\right)+f\left(1+\frac{2}{n}\right)+\cdots+f\left(1+\frac{k}{n}\right)-k\right]$
$=\left[\lim _{n \rightarrow \infty} \frac{f\left(1+\frac{1}{n}\right)-1}{\frac{1}{n}}\right]+2\left[\lim _{n \rightarrow \infty} \frac{f\left(1+\frac{2}{n}\right)-1}{\frac{2}{n}}\right]+\cdots+k\left[\lim _{n \rightarrow \infty} \frac{f\left(1+\frac{k}{n}\right)-1}{\frac{k}{n}}\right]$
$=\left[\lim _{n \rightarrow \infty} \frac{f\left(1+\frac{1}{n}\right)-f(1)}{\frac{1}{n}}\right]+2\left[\lim _{n \rightarrow \infty} \frac{f\left(1+\frac{2}{n}\right)-f(1)}{\frac{1}{n}}\right]+\cdots+k\left[\lim _{n \rightarrow \infty} \frac{f\left(1+\frac{k}{n}\right)-f(1)}{\frac{1}{n}}\right]$
$=(1+2+\cdots+k) f^{\prime}(1)$
$=\frac{k(k+1)}{2} f^{\prime}(1)$.
7. Let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable such that $f^{\prime}(x)=0$ for all $x \in[a, b]$. Show that f is constant.
Solution. For any $x, y \in[a, b]$, by MVT, we have $f(y)-f(x)=f^{\prime}(z)(y-x)$ for some z between x and y. Since $f^{\prime}(z)=0$, we get $f(x)=f(y)$ for all $x, y \in[a, b]$. This implies that f is a constant function.

