Indian Institute of Information Technology Allahabad End Sem Question Paper Marking Scheme

Important Instructions:

- 1. All notations are standard, and the same as used in classes and lecture notes.
- 1. Check whether the following statements are true or false. Give a proper justification. [8]
 - (a) Let $\sigma = (153)(264)$ be a permutation in S_7 . Then σ is an even permutation. Solution: True. Since $\sigma = (153)(264) = (13)(15)(24)(26)$, σ is even permutation.
 - (b) Let V be a vector space of dimension n. Let W_1 be a subspace of dimension n-1 and W_2 be a subspace of dimension r such that W_2 is not contained in W_1 . Then the dimension of $W_1 \cap W_2$ is n-2. **Solution:** False. $\min\{\dim(W_1), \dim(W_2)\} \ge \dim(W_1 \cap W_2) \ge \dim(W_1) + \dim(W_2) - \dim(V)$. Since W_1 and W_2 are distinct, $r > \dim(W_1 \cap W_2) \ge r-1$. So $\dim(W_1 \cap W_2) = r-1$.

(c) There exists a proper subspace (≠ ℝ) of C(ℝ) containing ℝ. Solution: False. We know that dim(C(ℝ)) = 2 and dim(ℝ(ℝ)) = 1. Suppose a proper subspace W(((ℝ)) of C(ℝ)) containing ℝ exists. Then, we have 1 dim(ℝ(ℝ))

space $W \ (\neq \mathbb{R})$ of $\mathbb{C}(\mathbb{R})$ containing \mathbb{R} exists. Then, we have $1 = \dim(\mathbb{R}(\mathbb{R})) < \dim(W) < \dim(\mathbb{C}(\mathbb{R})) = 2$, a contradiction.

- (d) There exists no linear map $T : \mathbb{R}^3 \to \mathbb{R}^2$ such that T(1,0,3) = (1,1) and T(-2,0,-6) = (2,1). Solution: True. As $T(\alpha x) \neq \alpha T(x)$ for $\alpha = -2$ and x = (1,0,3).
- (e) Let \mathbb{R}^2 be the standard real inner product space. If $S = \{(-1, -2)\}$, then $S^{\perp} = \{0\}$. Solution: false. $S^{\perp} = \{(x, y) \in \mathbb{R}^2 : -x - 2y = 0\} = Span\{(-2, 1)\}.$
- (f) If A is an $n \times n$ matrix with complex entries and $A^k = I$ for some integer k > 0, then A has a basis of eigenvectors.

Solution: True. Consider $f(x) = x^k - 1 = (x - \omega_1)(x - \omega_2) \cdots (x - \omega_k)$. If m(x) is the minimal polynomial of A, then m(x) divides f(x) and hence it is the product of linear factors. This implies A is diagonalizable, therefore A has a basis of eigenvectors.

(g) Let V be a real inner product space and $x, y \in V$. If ||x + y|| = ||x|| + ||y||, then x or y is a scalar multiple of the other. Solution: True. Taking square of ||x + y|| = ||x|| + ||y||, we get $\langle x, y \rangle = ||x|| ||y||$.

By Cauchy-Schwartz inequality, the set $\{x, y\}$ is LD.

- (h) The matrix $A = \begin{bmatrix} 2 & 1 & -1 \\ 1 & 4 & -2 \\ -1 & -2 & -4 \end{bmatrix}$ is positive definite. Solution: False. |A| = -36 < 0.
- 2. Provide a short answer to the following questions.
 - (a) Let us denote x = (x₁, x₂,..., x_n) ≥ 0 if x_i ≥ 0 for each 1 ≤ i ≤ n. Suppose x ≥ 0 whenever Ax ≥ 0. Show that A is invertible.
 Solution:
 Consider the homogeneous system Ax = 0.
 Using hypothesis, we have x ≥ 0. [1]
 Now, we also have A(-x) = 0, which by hypothesis gives -x ≥ 0. Combining both x ≥ 0 and -x ≥ 0, we get x = 0. So, the homogeneous system Ax = 0 has only trivial solution. This implies that A is invertible. [1]

[12]

(b) Let M be a 10×10 matrix such that all the entries of M are 5. Find the characteristic polynomial and minimal polynomial of M.

Solution: Since M is symmetric, M is diagonalizable and hence for each eigenvalue λ of M, $AM(\lambda) = GM(\lambda)$. [1/2] \therefore rank(M) = 1, $\lambda_1 = 0$ is an eigenvalue of M. GM(0) = 10 - rank(M - 0I) = 9, so AM(0) = 9. [1/2] If λ_2 is other eigenvalue of M, then $\lambda_2 + 9 \times 0 = trace(M) = 50$. This gives $\lambda_2 = 50$ with AM(50) = GM(50) = 1. [1/2] So, the characteristic polynomial of M is $x^9(x - 50)$. [1/2] The minimal polynomial of M is x(x - 50). (c) Let V be a complex inner product space and A be a linear transformation on A such that $\langle Av, v \rangle = 1$ for all $v \in V$ such that ||v|| = 1. Show that A = I.

Solution:

Given that for each $v \in V$ with ||v|| = 1, $\langle Av, v \rangle = 1 = \langle v, v \rangle$. Equivalently, $\langle (A - I)v, v \rangle = 0$ for all $v \in V$. For any $u, v \in V$ $\langle (A - I)(u + v), u + v \rangle = 0 \implies \langle (A - I)u, v \rangle + \langle (A - I)v, u \rangle = 0.$ $\langle (A - I)(u + iv), u + iv \rangle = 0 \implies -i\langle (A - I)u, v \rangle + i\langle (A - I)v, u \rangle = 0.$ Adding the above two equations, we get $\langle (A - I)u, v \rangle = 0.$ [1] In particular, $\langle (A - I)u, (A - I)u \rangle = 0$. Thus, (A - I)u = 0 for all u. Hence, A = I. [1]

(d) Let A be a real matrix with distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, which are real and positive. How many real matrices B satisfy the equation $A = B^2$. Solution:

Since A has distinct eigenvalues, it is diagonalizable. Thus, $A = PDP^{-1}$, where $D = diag(\lambda_1, \dots, \lambda_n)$. [1/2] Let $B = PD'P^{-1}$, where $D' = diag(\pm \sqrt{\lambda_1}, \dots, \pm \sqrt{\lambda_n})$. [1/2] Hence, $A = B^2$, and the number of possible Bs is 2^n . [1]

(e) Find the shortest distance of (1,1) from the line y = 4x in \mathbb{R}^2 under the inner product $\langle (x_1, y_1), (x_2, y_2) \rangle = x_1 x_2 + 2x_1 y_2 + 2x_2 y_1 + 5y_1 y_2$.

Solution:

Let W denote the line y = 4x. An orthonormal basis of W is $\{w = (\frac{1}{\sqrt{97}}, \frac{4}{\sqrt{97}})\} = \frac{31}{97}(1, 4)$. [1] Now, $P_W(v) = \langle (1, 1), w \rangle w = \frac{31}{\sqrt{97}}w$. Therefore, the shortest distance of (1, 1) from W is $\|v - P_w(v)\| = \|(1, 1) - \frac{31}{97}(1, 4)\| = \|(\frac{66}{97}, \frac{-27}{97})\|$ $= \frac{1}{97}\sqrt{66^2 + 4.66.(-27) + 5.27^2} = \frac{\sqrt{873}}{97}$. [1]

(f) Let A be a 6×6 matrix with characteristic polynomial $p(x) = (x-2)^4(x-3)^2$ and minimal polynomial $m(x) = (x-2)^2(x-3)^2$. If the rank of (A-2I) is 4, write down all possible Jordan canonical forms of A. **Solution:** The possible Jordan canonical form J of A is given below:

$$J = \begin{pmatrix} 2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{pmatrix}$$

3. For the below matrix A, find an orthogonal matrix P such that $P^T A P$ is diagonal, where P^T denotes the transpose of P. Also, write the matrix A as the linear sum of projection matrices. [6]

[2]

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

Solution:

The characteristic polynomial of A is $-(\lambda - 3)^2(\lambda + 2)$

eigenvalues of A are $\lambda_1 = -2$, $\lambda_2 = \lambda_3 = 3$ [1/2+1/2]For the eigenvalue $\lambda_1 = -2$, (A + 2I)X = 0 gives independent eigenvector (-2, 1, 0). Dividing by its norm we get, $X_1 = \frac{1}{\sqrt{5}}(-2, 1, 0)$. [1]

For the eigenvalue $\lambda_2 = 2$, (A - 3I)X = 0 gives independent eigenvectors (1, 2, 0), (0, 0, 1). Dividing by their norms we get, $X_2 = \frac{1}{\sqrt{5}}(1, 2, 0)$ and $X_3 = (0, 0, 1)$. [1+1]

Thus
$$P = \begin{pmatrix} \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 0\\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} & 0\\ 0 & 0 & \frac{1}{\sqrt{5}} \end{pmatrix}$$
 [1/2]
and $P^T A P = \begin{pmatrix} -2 & 0 & 0\\ 0 & 3 & 0\\ 0 & 0 & 3 \end{pmatrix}$.

This implies that the given matrix is diagonalizable.

Now,
$$E_1 = \frac{A - \lambda_2 I}{\lambda_1 - \lambda_2} = \frac{1}{5}(3I - A)$$
 and $E_2 = \frac{A - \lambda_1 I}{\lambda_2 - \lambda_1} = \frac{1}{5}(A + 2I).$ [1/2+1/2]
then the decomposition of $A = \lambda_1 E_1 + \lambda_2 E_2 = \frac{-2}{5}(3I - A) + \frac{3}{5}(A + 2I).$ [1/2]

4. Find the singular value decomposition of the matrix $M = \begin{bmatrix} -3 & 1 \\ 6 & -2 \\ 6 & -2 \end{bmatrix}$.

$\begin{bmatrix} 2\\2 \end{bmatrix}$. [4]

Solution:

Given matrix $A = \begin{pmatrix} -3 & 1 \\ 6 & -2 \\ 6 & -2 \end{pmatrix}$. Then, $AA^T = \begin{pmatrix} 10 & -20 & -20 \\ -20 & 40 & 40 \\ -20 & 40 & 40 \end{pmatrix}$ and $A^TA = \begin{pmatrix} 81 & -27 \\ -27 & 9 \end{pmatrix}$. The eigenvalues of $A^T A$ is $\lambda_1 = 90, \ \lambda_2 = 0.$ [1/2+1/2]The eigenvector corresponding to $\lambda_1 = 90$ is $\begin{pmatrix} -3 \\ 1 \end{pmatrix}$. The eigenvector corresponding to $\lambda_2 = 0$ is $\begin{pmatrix} 1 \\ 3 \end{pmatrix}$. Therefore, after orthonormalization of the above vectors, $V = \begin{pmatrix} \frac{-3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \end{pmatrix}$. [1/2+1/2]The eigenvalues of AA^T is $\lambda_1 = 90, \ \lambda_2 = 0, \ \lambda_3 = 0.$ The eigenvector corresponding to $\lambda_1 = 90$ is $\begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$. The eigenvector corresponding to $\lambda_2 = 0$ is $\begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$. Applying Gram-Schmidt orthogonalization process, we get $\left\{ \begin{pmatrix} 1\\ -2\\ 2 \end{pmatrix} \right\}$, $\begin{pmatrix} 2\\1\\0 \end{pmatrix}, \begin{pmatrix} \frac{2}{5}\\ \frac{-4}{5}\\1 \end{pmatrix} \}.$ Therefore, after orthonormalization of the above vectors, $U = \begin{pmatrix} \frac{1}{3} & \frac{2}{\sqrt{5}} & \frac{2}{3\sqrt{5}} \\ \frac{-2}{3} & \frac{1}{\sqrt{5}} & \frac{-4}{3\sqrt{5}} \\ \frac{-2}{-2} & 0 & \sqrt{5} \end{pmatrix}$.

[1/2+1/2+1/2]

Further,
$$\Sigma = \begin{pmatrix} 3\sqrt{10} & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$
. Then $A = U\Sigma V^T$. [1/2]

5. Find a straight line which fits best the given points (1, 2), (2, 3), (3, 5),and (4, 7). [4] Solution:

Given data is (1, 2), (2, 3), (3, 5), (4, 7). Let the equation of the line passing through the points be y = mx + c. Then,

$$2 = m + c$$

$$3 = 2m + c$$

$$5 = 3m + c$$

$$7 = 4m + c.[1]$$

In matrix form, AX = b, where $A = \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{pmatrix}$, $b = \begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix}$ and $x = \begin{pmatrix} m \\ c \end{pmatrix}$.

$$A^{T}A = \begin{pmatrix} 30 & 10\\ 10 & 4 \end{pmatrix},$$

$$A^{T}b = \begin{pmatrix} 51\\ 17 \end{pmatrix}.$$
[1/2]
[1]

Now solving the system $A^T A X = A^T b$, we get $m = \frac{17}{10}$ and c = 0. [1+1]

6. For the below matrix A, find a matrix P and J such that $P^{-1}AP = J$, where J denotes the Jordan canonical form of A. [6]

$$A = \begin{bmatrix} 2 & -1 & 0 & 1 \\ 0 & 3 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 0 & 3 \end{bmatrix}$$

Solution:

Given matrix
$$A = \begin{pmatrix} 2 & -1 & 0 & 1 \\ 0 & 3 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 0 & 3 \end{pmatrix}$$
.

The characteristic polynomial is $\det(A - \lambda I) = \det \begin{pmatrix} 2 - \lambda & -1 & 0 & 1 \\ 0 & 3 - \lambda & -1 & 0 \\ 0 & 1 & 1 - \lambda & 0 \\ 0 & -1 & 0 & 3 - \lambda \end{pmatrix} =$

$$(\lambda - 2)^{3}(\lambda - 3).$$
(1+1]
Now, $N(A - 3I) = N \begin{pmatrix} -1 & -1 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix} = \text{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}.$

$$N(A - 2I) = N \begin{pmatrix} 0 & -1 & 0 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix} = \text{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \right\}.$$
Thus, the Jordan Canonical form is $J = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$
[2]

To find a matrix
$$Q$$
 such that $Q^{-1}AQ = J$. Then $Q = [X_1 \ X_2 \ X_3 \ X_4]$, where $X_4 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$, $X_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$, $X_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $(A - 2I)X_3 = X_2$. Therefore, $X_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 2 \end{pmatrix}$. $[1/2 + 1/2 + 1/2]$