Indian Institute of Information Technology Allahabad End Sem Question Paper
 Marking Scheme

Important Instructions:

1. All notations are standard, and the same as used in classes and lecture notes.
2. Check whether the following statements are true or false. Give a proper justification.
(a) Let $\sigma=(153)(264)$ be a permutation in S_{7}. Then σ is an even permutation. Solution: True.
Since $\sigma=(153)(264)=(13)(15)(24)(26), \sigma$ is even permutation.
(b) Let V be a vector space of dimension n. Let W_{1} be a subspace of dimension $n-1$ and W_{2} be a subspace of dimension r such that W_{2} is not contained in W_{1}. Then the dimension of $W_{1} \cap W_{2}$ is $n-2$.
Solution: False.
$\min \left\{\operatorname{dim}\left(W_{1}\right), \operatorname{dim}\left(W_{2}\right)\right\} \geq \operatorname{dim}\left(W_{1} \cap W_{2}\right) \geq \operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)-\operatorname{dim}(V)$. Since W_{1} and W_{2} are distinct, $r>\operatorname{dim}\left(W_{1} \cap W_{2}\right) \geq r-1$.
So $\operatorname{dim}\left(W_{1} \cap W_{2}\right)=r-1$.
(c) There exists a proper subspace $(\neq \mathbb{R})$ of $\mathbb{C}(\mathbb{R})$ containing \mathbb{R}.

Solution: False.
We know that $\operatorname{dim}(\mathbb{C}(\mathbb{R}))=2$ and $\operatorname{dim}(\mathbb{R}(\mathbb{R}))=1$. Suppose a proper subspace $W(\neq \mathbb{R})$ of $\mathbb{C}(\mathbb{R})$ containing \mathbb{R} exists. Then, we have $1=\operatorname{dim}(\mathbb{R}(\mathbb{R}))<$ $\operatorname{dim}(W)<\operatorname{dim}(\mathbb{C}(\mathbb{R}))=2$, a contradiction.
(d) There exists no linear map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ such that $T(1,0,3)=(1,1)$ and $T(-2,0,-6)=(2,1)$.
Solution: True. As $T(\alpha x) \neq \alpha T(x)$ for $\alpha=-2$ and $x=(1,0,3)$.
(e) Let \mathbb{R}^{2} be the standard real inner product space. If $S=\{(-1,-2)\}$, then $S^{\perp}=\{0\}$.
Solution: false.
$S^{\perp}=\left\{(x, y) \in \mathbb{R}^{2}:-x-2 y=0\right\}=\operatorname{Span}\{(-2,1)\}$.
(f) If A is an $n \times n$ matrix with complex entries and $A^{k}=I$ for some integer $k>0$, then A has a basis of eigenvectors.

Solution: True.
Consider $f(x)=x^{k}-1=\left(x-\omega_{1}\right)\left(x-\omega_{2}\right) \cdots\left(x-\omega_{k}\right)$.
If $m(x)$ is the minimal polynomial of A, then $m(x)$ divides $f(x)$ and hence it is the product of linear factors.
This implies A is diagonalizable, therefore A has a basis of eigenvectors.
(g) Let V be a real inner product space and $x, y \in V$. If $\|x+y\|=\|x\|+\|y\|$, then x or y is a scalar multiple of the other.
Solution: True.
Taking square of $\|x+y\|=\|x\|+\|y\|$, we get $\langle x, y\rangle=\|x\|\|y\|$.
By Cauchy-Schwartz inequality, the set $\{x, y\}$ is LD.
(h) The matrix $A=\left[\begin{array}{ccc}2 & 1 & -1 \\ 1 & 4 & -2 \\ -1 & -2 & -4\end{array}\right]$ is positive definite.

Solution: False. $|A|=-36<0$.
2. Provide a short answer to the following questions.
(a) Let us denote $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \geq 0$ if $x_{i} \geq 0$ for each $1 \leq i \leq n$. Suppose $x \geq 0$ whenever $A x \geq 0$. Show that A is invertible.

Solution:

Consider the homogeneous system $A x=0$.
Using hypothesis, we have $x \geq 0$.
Now, we also have $A(-x)=0$, which by hypothesis gives $-x \geq 0$. Com-
bining both $x \geq 0$ and $-x \geq 0$, we get $x=0$. So, the homogeneous system $A x=0$ has only trivial solution. This implies that A is invertible.
(b) Let M be a 10×10 matrix such that all the entries of M are 5 . Find the characteristic polynomial and minimal polynomial of M.

Solution: Since M is symmetric, M is diagonalizable and hence for each eigenvalue λ of $M, A M(\lambda)=G M(\lambda)$.
$\because \operatorname{rank}(M)=1, \lambda_{1}=0$ is an eigenvalue of $M . G M(0)=10-\operatorname{rank}(M-0 I)=$ 9 , so $A M(0)=9$.
[1/2]
If λ_{2} is other eigenvalue of M, then $\lambda_{2}+9 \times 0=\operatorname{trace}(M)=50$.
This gives $\lambda_{2}=50$ with $A M(50)=G M(50)=1$.
So, the characteristic polynomial of M is $x^{9}(x-50)$.
The minimal polynomial of M is $x(x-50)$.
(c) Let V be a complex inner product space and A be a linear transformation on A such that $\langle A v, v\rangle=1$ for all $v \in V$ such that $\|v\|=1$. Show that $A=I$.

Solution:

Given that for each $v \in V$ with $\|v\|=1,\langle A v, v\rangle=1=\langle v, v\rangle$. Equivalently, $\langle(A-I) v, v\rangle=0$ for all $v \in V$. For any $u, v \in V$
$\langle(A-I)(u+v), u+v\rangle=0 \Longrightarrow\langle(A-I) u, v\rangle+\langle(A-I) v, u\rangle=0$.
$\langle(A-I)(u+i v), u+i v\rangle=0 \Longrightarrow-i\langle(A-I) u, v\rangle+i\langle(A-I) v, u\rangle=0$.
Adding the above two equations, we get $\langle(A-I) u, v\rangle=0$.
In particular, $\langle(A-I) u,(A-I) u\rangle=0$. Thus, $(A-I) u=0$ for all u. Hence, $A=I$.
(d) Let A be a real matrix with distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, which are real and positive. How many real matrices B satisfy the equation $A=B^{2}$.

Solution:

Since A has distinct eigenvalues, it is diagonalizable. Thus, $A=P D P^{-1}$, where $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. $\quad[1 / 2]$
Let $B=P D^{\prime} P^{-1}$, where $D^{\prime}=\operatorname{diag}\left(\pm \sqrt{\lambda_{1}}, \ldots, \pm \sqrt{\lambda_{n}}\right)$.
Hence, $A=B^{2}$, and the number of possible $B \mathrm{~s}$ is 2^{n}.
(e) Find the shortest distance of $(1,1)$ from the line $y=4 x$ in \mathbb{R}^{2} under the inner product $\left\langle\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\rangle=x_{1} x_{2}+2 x_{1} y_{2}+2 x_{2} y_{1}+5 y_{1} y_{2}$.

Solution:

Let W denote the line $y=4 x$.
An orthonormal basis of W is $\left\{w=\left(\frac{1}{\sqrt{97}}, \frac{4}{\sqrt{97}}\right)\right\}=\frac{31}{97}(1,4)$.
Now, $P_{W}(v)=\langle(1,1), w\rangle w=\frac{31}{\sqrt{97}} w$.
Therefore, the shortest distance of $(1,1)$ from W is
$\left\|v-P_{w}(v)\right\|=\left\|(1,1)-\frac{31}{97}(1,4)\right\|=\left\|\left(\frac{66}{97}, \frac{-27}{97}\right)\right\|$
$=\frac{1}{97} \sqrt{66^{2}+4.66 .(-27)+5.27^{2}}=\frac{\sqrt{873}}{97}$.
(f) Let A be a 6×6 matrix with characteristic polynomial $p(x)=(x-2)^{4}(x-3)^{2}$ and minimal polynomial $m(x)=(x-2)^{2}(x-3)^{2}$. If the rank of $(A-2 I)$ is 4, write down all possible Jordan canonical forms of A.
Solution: The possible Jordan canonical form J of A is given below:

$$
J=\left(\begin{array}{llllll}
\begin{array}{llllll}
2 & 1 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 3 & 1 \\
0 & 0 & 0 & 0 & 0 & 3
\end{array} \tag{2}
\end{array}\right)
$$

3. For the below matrix A, find an orthogonal matrix P such that $P^{T} A P$ is diagonal, where P^{T} denotes the transpose of P. Also, write the matrix A as the linear sum of projection matrices.

$$
A=\left[\begin{array}{ccc}
-1 & 2 & 0 \\
2 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

Solution:

The characteristic polynomial of A is $-(\lambda-3)^{2}(\lambda+2)$
eigenvalues of A are $\lambda_{1}=-2, \lambda_{2}=\lambda_{3}=3$
$[1 / 2+1 / 2]$
For the eigenvalue $\lambda_{1}=-2,(A+2 I) X=0$ gives independent eigenvector $(-2,1,0)$. Dividing by its norm we get, $X_{1}=\frac{1}{\sqrt{5}}(-2,1,0)$.
For the eigenvalue $\lambda_{2}=2,(A-3 I) X=0$ gives independent eigenvectors (1,2,0), $(0,0,1)$. Dividing by their norms we get, $X_{2}=\frac{1}{\sqrt{5}}(1,2,0)$ and $X_{3}=(0,0,1)$. $\quad[1+1]$
Thus $P=\left(\begin{array}{ccc}\frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 0 \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} & 0 \\ 0 & 0 & \frac{1}{\sqrt{5}}\end{array}\right)$
and $P^{T} A P=\left(\begin{array}{ccc}-2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right)$.
This implies that the given matrix is diagonalizable.
Now, $E_{1}=\frac{A-\lambda_{2} I}{\lambda_{1}-\lambda_{2}}=\frac{1}{5}(3 I-A)$ and $E_{2}=\frac{A-\lambda_{1} I}{\lambda_{2}-\lambda_{1}}=\frac{1}{5}(A+2 I)$.
$[1 / 2+1 / 2]$
then the decomposition of $A=\lambda_{1} E_{1}+\lambda_{2} E_{2}=\frac{-2}{5}(3 I-A)+\frac{3}{5}(A+2 I)$.
4. Find the singular value decomposition of the matrix $M=\left[\begin{array}{cc}-3 & 1 \\ 6 & -2 \\ 6 & -2\end{array}\right]$.

Solution:

Given matrix $A=\left(\begin{array}{cc}-3 & 1 \\ 6 & -2 \\ 6 & -2\end{array}\right)$.
Then, $A A^{T}=\left(\begin{array}{ccc}10 & -20 & -20 \\ -20 & 40 & 40 \\ -20 & 40 & 40\end{array}\right)$ and $A^{T} A=\left(\begin{array}{cc}81 & -27 \\ -27 & 9\end{array}\right)$.
The eigenvalues of $A^{T} A$ is $\lambda_{1}=90, \lambda_{2}=0$.
The eigenvector corresponding to $\lambda_{1}=90$ is $\binom{-3}{1}$.
The eigenvector corresponding to $\lambda_{2}=0$ is $\binom{1}{3}$.
Therefore, after orthonormalization of the above vectors, $V=\left(\begin{array}{cc}\frac{-3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}}\end{array}\right) \cdot[1 / 2+1 / 2]$
The eigenvalues of $A A^{T}$ is $\lambda_{1}=90, \lambda_{2}=0, \lambda_{3}=0$.
The eigenvector corresponding to $\lambda_{1}=90$ is $\left(\begin{array}{c}1 \\ -2 \\ -2\end{array}\right)$.
The eigenvector corresponding to $\lambda_{2}=0$ is $\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right)$.
Applying Gram-Schmidt orthogonalization process, we get $\left\{\left(\begin{array}{c}1 \\ -2 \\ -2\end{array}\right)\right.$,
$\left.\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}\frac{2}{5} \\ \frac{-4}{5} \\ 1\end{array}\right)\right\}$.
Therefore, after orthonormalization of the above vectors, $U=\left(\begin{array}{ccc}\frac{1}{3} & \frac{2}{\sqrt{5}} & \frac{2}{3 \sqrt{5}} \\ \frac{-2}{3} & \frac{1}{\sqrt{5}} & \frac{-4}{3 \sqrt{5}} \\ \frac{-2}{3} & 0 & \frac{\sqrt{5}}{3}\end{array}\right)$. $[1 / 2+1 / 2+1 / 2]$

Further, $\Sigma=\left(\begin{array}{cc}3 \sqrt{10} & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right)$. Then $A=U \Sigma V^{T}$.
5. Find a straight line which fits best the given points $(1,2),(2,3),(3,5)$, and $(4,7)$. [4] Solution:
Given data is $(1,2),(2,3),(3,5),(4,7)$. Let the equation of the line passing through the points be $y=m x+c$. Then,

$$
\begin{aligned}
& 2=m+c \\
& 3=2 m+c \\
& 5=3 m+c \\
& 7=4 m+c .[1]
\end{aligned}
$$

In matrix form, $A X=b$, where $A=\left(\begin{array}{ll}1 & 1 \\ 2 & 1 \\ 3 & 1 \\ 4 & 1\end{array}\right), b=\left(\begin{array}{l}2 \\ 3 \\ 5 \\ 7\end{array}\right)$ and $x=\binom{m}{c}$.
$A^{T} A=\left(\begin{array}{cc}30 & 10 \\ 10 & 4\end{array}\right)$,
$A^{T} b=\binom{51}{17}$.
Now solving the system $A^{T} A X=A^{T} b$, we get $m=\frac{17}{10}$ and $c=0$.
6. For the below matrix A, find a matrix P and J such that $P^{-1} A P=J$, where J denotes the Jordan canonical form of A.

$$
A=\left[\begin{array}{cccc}
2 & -1 & 0 & 1 \\
0 & 3 & -1 & 0 \\
0 & 1 & 1 & 0 \\
0 & -1 & 0 & 3
\end{array}\right]
$$

Solution:

Given matrix $A=\left(\begin{array}{cccc}2 & -1 & 0 & 1 \\ 0 & 3 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 0 & 3\end{array}\right)$.

The characteristic polynomial is $\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cccc}2-\lambda & -1 & 0 & 1 \\ 0 & 3-\lambda & -1 & 0 \\ 0 & 1 & 1-\lambda & 0 \\ 0 & -1 & 0 & 3-\lambda\end{array}\right)=$ $(\lambda-2)^{3}(\lambda-3)$. $[1+1]$
Now, $N(A-3 I)=N\left(\begin{array}{cccc}-1 & -1 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & -1 & 0 & 0\end{array}\right)=\operatorname{Span}\left\{\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right)\right\}$.
$N(A-2 I)=N\left(\begin{array}{cccc}0 & -1 & 0 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & -1 & 0 & 1\end{array}\right)=\operatorname{Span}\left\{\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right)\right\}$.
Thus, the Jordan Canonical form is $J=\left(\begin{array}{cccc}2 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3\end{array}\right)$.
To find a matrix Q such that $Q^{-1} A Q=J$. Then $Q=\left[\begin{array}{llll}X_{1} & X_{2} & X_{3} & X_{4}\end{array}\right]$, where $X_{4}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right), X_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right), X_{2}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right),(A-2 I) X_{3}=X_{2}$. Therefore, $X_{3}=\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 2\end{array}\right)$.
$[1 / 2+1 / 2+1 / 2+1 / 2]$

