Indian Institute of Information Technology Allahabad
 Convex Optimization (SMAT430C)
 Quiz 02: Tentative Marking Scheme

Maximun marks is 25. If you get more than 25 , the extra mark(s) will be added to your total marks out of 150 as a bonus.

1. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function. Let $c \in \mathbb{R}$ be a point such that for $t \leq c, f$ is decreasing, and for $t \geq c, f$ is increasing. Prove that f is quasiconvex. (Note: f need not be convex).

Solution. Let $x, y \in S_{\alpha}=\{x: f(x) \leq \alpha\}$ such that $x<y$. Then $f(x) \leq \alpha, f(y) \leq \alpha$. [1]
Let $z=\lambda x+(1-\lambda) y$, for $\lambda \in(0,1)$. We have $x<z<y$. We want to show that S_{α} is convex, i.e., $z \in S_{\alpha}$ or $f(z) \leq \alpha$.
If $z \leq c$, then $f(z) \leq f(x) \leq \alpha(\because f$ is decreasing for $t \leq c)$.
If $z \geq c$, then $f(z) \leq f(y) \leq \alpha(\because f$ is increasing for $t \geq c)$.
2. Find $\sup \left\{a^{T} x:\|x\|_{2} \leq 5\right\}$, where a is a nonzero vector in \mathbb{R}^{n}.

Solution. Let $S=\left\{a^{T} x:\|x\|_{2} \leq 5\right\}$. Then
$\langle a, x\rangle=a^{T} x \leq\|a\|_{2}\|x\|_{2} \leq 5\|a\|_{2}$, (by Cauchy-Schwartz inequality).
Let $x_{0}=\frac{5 a}{\|a\|_{2}}$. Then $\left\|x_{0}\right\|_{2}=5$ and,
$a^{T} x_{0}=\frac{a^{T}(5 a)}{\|a\|_{2}}=\frac{5\|a\|_{2}^{2}}{\|a\|_{2}}=5\|a\|_{2}$.
$\therefore \sup S=5\|a\|_{2}$.
3. Let the pair x and (λ, ν) be primal and dual feasible respectively. If the duality gap associated with this pair is zero, prove that x is primal optimal and (λ, ν) is dual optimal.[7]
Solution. If x is primal feasible, and (λ, ν) is dual feasible, then
$f_{0}(x)-p^{*} \leq f_{0}(x)-g(\lambda, \nu)$.
Given that the duality gap is zero, i.e., $f_{0}(x)-g(\lambda, \nu)=0$ or $f_{0}(x)=g(\lambda, \nu)$.
$\therefore f_{0}(x)-p^{*} \leq 0 \Longrightarrow f_{0}(x)=p^{*}$, by definition of p^{*}.
$\therefore x$ is primal optimal.
Now, we know that $g(\lambda, \nu) \leq d^{*} \leq p^{*}$.
But $f_{0}(x)=g(\lambda, \nu) \leq d^{*} \leq p^{*}=f_{0}(x) \Longrightarrow g(\lambda, \nu)=d^{*}$.
$\therefore(\lambda, \nu)$ is dual optimal.
4. Find the local extreme values of $f(x, y)=3 y^{2}-2 y^{3}-3 x^{2}+6 x y$.

Since f is differentiable everywhere, it can assume extreme values only where $f_{x}=6 y-6 x=0$, and $f_{y}=6 y-6 y^{2}+6 x=0$.

Therefore, the two critical points are $(0,0)$ and $(2,2)$.
To classify the critical points, we calculate the second derivatives:
$f_{x x}=-6, f_{y y}=6-12 y, f_{x y}=6$.

$$
[1+1+1]
$$

The discriminant is given by
$f_{x x} f_{y y}-f_{x y}^{2}=72(y-1)$.
At $(0,0)$, the discriminant is negative, so the function has a saddle point at the origin. [1]
At $(2,2)$ the discriminant is positive, and $f_{x x}<0$, so $(2,2)$ is a point of local maximum. [1]
5. A vector $g \in \mathbb{R}^{n}$ is a subgradient of $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ at $x \in \operatorname{dom} f$ if for all $y \in \operatorname{dom} f$ we have $f(y) \geq f(x)+g^{T}(y-x)$. If f is convex and differentiable, then its gradient at x is a subgradient.
A function f is called subdifferentiable at x if there exists at least one subgradient at x. The set of subgradients of f at the point x is called the subdifferential of f at x, and is denoted by $\delta f(x)$.
Consider the absolute value function $f(x)=|x|, x \in \mathbb{R}$. Find $\delta|x|$.
Solution. $|x|$ is convex $\forall x \in \mathbb{R}$, and differentiable $\forall x \in \mathbb{R} \backslash\{0\}$. Hence, subgradient is unique.
$\delta|x|=1$ for $x>0$, and $\delta|x|=-1$ for $x<0$.
At $x=0$, the subdifferential is defined by the inequality $|y| \geq g y$ for all $y \in \mathbb{R}$.
This is satisfied if and only if $g \in[-1,1]$.
Thus,

$$
\delta|x|= \begin{cases}+1 & x>0 \\ {[-1,1]} & x=0 \\ -1 & x<0\end{cases}
$$

6. Consider the problem
minimize $\quad-x y$
subject to $\quad x+y^{2} \leq 2$,

$$
x, y \geq 0
$$

Find the Lagrangian associated with the above problem. Derive tha KKT conditions. [12]
Solution. The Lagrangian is given by

$$
\begin{equation*}
L\left(x, y, \lambda_{1}, \lambda_{2}, \lambda_{3}\right)=-x y+\lambda_{1}\left(x+y^{2}-2\right)+\lambda_{2}(-x)+\lambda_{3}(-y) \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
x+y^{2}-2 & \leq 0 \\
-x & \leq 0 \\
-y & \leq 0 \\
\lambda_{1} & \geq 0 \\
\lambda_{2} & \geq 0 \\
\lambda_{3} & \geq 0 \\
\lambda_{1}\left(x+y^{2}-2\right) & =0 \\
\lambda_{2} x & =0 \\
\lambda_{3} y & =0 \\
-y+\lambda_{1}-\lambda_{2} & =0 \\
-x+2 \lambda_{1} y-\lambda_{3} & =0
\end{aligned}
$$

