Indian Institute of Information Technology Allahabad Convex Optimization (SMAT430C): Quiz II

Attempt as many Questions as you can. Do not worry about marks. Time allotted is $\mathbf{1}$ hour.

1. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function. Let $c \in \mathbb{R}$ be a point such that for $t \leq c$, f is decreasing, and for $t \geq c, f$ is increasing. Prove that f is quasiconvex. (Note: f need not be convex).
2. Find $\sup \left\{a^{T} x:\|x\|_{2} \leq 5\right\}$, where a is a nonzero vector in \mathbb{R}^{n}.
3. Let the pair x and (λ, ν) be primal and dual feasible respectively. If the duality gap associated with this pair is zero, prove that x is primal optimal and (λ, ν) is dual optimal.
4. Find the local extreme values of $f(x, y)=3 y^{2}-2 y^{3}-3 x^{2}+6 x y$.
5. A vector $g \in \mathbb{R}^{n}$ is a subgradient of $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ at $x \in \operatorname{dom} f$ if for all $y \in \operatorname{dom} f$ we have $f(y) \geq f(x)+g^{T}(y-x)$. If f is convex and differentiable, then its gradient at x is a subgradient.

A function f is called subdifferentiable at x if there exists at least one subgradient at x. The set of subgradients of f at the point x is called the subdifferential of f at x, and is denoted by $\delta f(x)$.
Consider the absolute value function $f(x)=|x|, x \in \mathbb{R}$. Find $\delta|x|$.
6. Consider the problem
minimize $\quad-x y$
subject to $\quad x+y^{2} \leq 2$,

$$
x, y \geq 0
$$

Find the Lagrangian associated with the above problem. Derive tha KKT conditions.

