Indian Institute of Information Technology Allahabad

Mid Semester Examination, March 2017

Date of Examination (Meeting): 05.03.2017 (1st meeting)

Program Code & Semester: B.Tech. (IT) & Dual Degree B.Tech.-M.Tech. IV Semester

Paper Title: Convex Optimization, Paper Code: SMAT430C

Paper Setter: Abdullah Bin Abu Baker & Anand Kumar Tiwari

Max Marks: 35

Duration: 2 hours

[8]

Attempt each question on a new page, and attempt all the parts of a question at the same place. Numbers indicated on the right in [] are full marks of that particular problem. **Notations:** \mathbb{N} : Set of natural numbers, \mathbb{Z} : Set of integers, K_1 and K_2 are Cones, inf is the infimum, $\mathbb{R}^n_+ = \{x \in \mathbb{R}^n : x \succeq 0\}, \mathbb{R}_{++} = \{x \in \mathbb{R} : x > 0\}.$

- 1. Prove or disprove the following statements.
 - (a) Let $A, B \subset \mathbb{R}$ such that $A \subseteq B$. Then $\inf B \leq \inf A$. [2]
 - (b) The set $\{x \in \mathbb{R} : -\frac{1}{2}x^2 + x + 1 \le 0\}$ is convex. [2]
 - (c) The average value of a continuous and convex function $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ on any line segment is less than or equal to the average of its values at the endpoints of the segment. [3]
 - (d) The cone \mathbb{R}^n_+ is self-dual. [3]
 - (e) $K_1 \subseteq K_2 \implies K_1^* \subseteq K_2^*$. [2]
- 2. Let $f : \mathbb{R} \times \mathbb{R}_{++} \longrightarrow \mathbb{R}$ be defined as $f(x, y) = \frac{x^2}{y}$. Determine whether f is convex or not. Is f quasiconvex. [4]
- Show that the conjugate of a function is always a convex function. Derive the conjugate of the exponential function on ℝ.
- 4. Find minimum and minimal element(s) of the set $\{x \in \mathbb{R}^2 : ||x||_{\infty} \le 1\}$. [3]
- 5. Find the supremum and infimum of the set $\{\frac{m}{|m|+n} : n \in \mathbb{N}, m \in \mathbb{Z}\}$. [2]
- 6. Prove that a function is convex if and only if its epigraph is a convex set.