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Attempt each question on a new page, and attempt all the parts of Q.1 and Q.7 at the same place. Numbers
indicated on the right in [ ] are full marks of that particular problem. All notations are standard and same
as used in class. A matrix A is indefinite if neither A nor −A is positive semidefinite.

1. Pick out the correct option(s) in the following questions. No justification is required. [9]

Note: 1 mark will be awarded for each correct option. However, if any option is wrong you will be
awarded 0 mark even if some of the options are correct.

i) Let S = {(x1, x2) ∈ R2 : 0 ≤ xi ≤ 1, i = 1, 2} and D = {x ∈ R2 : ||x||2 ≤ 1}. Then [2]

S ∩D is convexa) S ∪D is convexb) S \D is convexc) Noned)

Solution. (a) and (b).

ii) Let C = {(1, 0), (1, 1), (−1,−1), (0, 0)}. Then [1]

(0,−1/3) ∈ conv Ca) (0, 1/3) ∈ conv Cb)

(0, 1/3) is in the conic hull of Cc) Noned)

Solution. (a).

iii) Consider the set S = {(0, 2), (1, 1), (2, 3), (1, 2), (4, 0)}. Then [1]

(0, 2) is the minimum element of Sa) (0, 2) is a minimal element of Sb)

(2, 3) is a minimal element of Sc) Noned)

Solution. (b).

iv) Let K = {(x1, x2) : 0 ≤ x1 ≤ x2}. Then [1]

(1, 3) �K (3, 4)a) (−1, 2) ∈ K∗b) Nonec)

Solution. (b).

v) Which of the following statement(s) is correct. [3]

The function f(x) = max{1/2, x, x2} is convex.a)

The square of a convex nonnegative function is convex.b)

The function f(x) = 1/(1− x2), with dom f = (−1, 1) is log-convex.c)

Noned)

Solution. (a), (b) and (c).

vi) f(x, y) =
x

y
+
y

x
is a posynomial function (x and y are positive variables). [1]

Truea) Falseb)

Solution. (a).
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2. Classify the following matrix as positive definite, positive semidefinite, indefinite:1 0 4
0 2 0
4 0 18

 .

providing justification to your answer. [4]

Solution. Denote the above matrix by A. For X = (x, y, z) ∈ R3,

XTAX =
(
x y z

)1 0 4
0 2 0
4 0 18

xy
z

 =
(
x+ 4z 2y 4x+ 18z

)xy
z

 [1]

= x2 + 2y2 + 18z2 + 8xz. [1]

= 2y2 + (x+ 4z)2 + 2z2 > 0, for X 6= 0. [1]

Therefore, the matrix is positive definite. [1]

Alternative Solution: A is symmetric, i.e., AT = A. [1]

The eigenvalues of A are: λ1 = 2 > 0, λ2 = 19+
√
353

2 > 0, λ3 = 19−
√
353

2 > 0, [1+1]

∴ A is positive definite. [1]

Alternative Solution: A is symmetric, i.e., AT = A. [1]

We compute all principal minors of A.

First order principal minors: |a11| = 1 > 0, |a22| = 2 > 0, |a33| = 18 > 0 [3/4]

Second order principal minors:

∣∣∣∣1 0
0 2

∣∣∣∣ = 2 > 0,

∣∣∣∣1 4
4 18

∣∣∣∣ = 2 > 0,

∣∣∣∣2 0
0 18

∣∣∣∣ = 36 > 0. [3/4]

Third order principal minors: detA =

∣∣∣∣∣∣
1 0 4
0 2 0
4 0 18

∣∣∣∣∣∣ = 4 > 0. [1/2]

∴ A is positive definite. [1]

3. Consider the halfspace C and hyperbolic set D described below:

C = {(x1, x2) ∈ R2 : x2 ≤ 0}

and
D = {(x1, x2) ∈ R2 : x1x2 ≥ 1, x1 ≥ 0, x2 ≥ 0}.

Prove that C and D can be separated by a hyperplane without finding any explicit expression of a
hyperplane separating C and D. State whether they can be strictly separated (no proof required). [8]

Solution. We need to prove that C and D are convex and disjoint, and hence Separating hyperplane
theorem can be applied. [1]

Clearly C and D are disjoint. [1]

C is a halfspace and hence convex. [1]

For Convexity of D, let (x1, x2), (y1, y2) ∈ D, 0 ≤ α ≤ 1. Then α(x1, x2) + (1 − α)(y1, y2) = (αx1 +
(1− α)y1, αx2 + (1− α)y2). Now, [(αx1 + (1− α)y1][αx2 + (1− α)y2)] = α2x1x2 + (1− α)2y1y2 + α(1−
α)(x1y2 + x2y1) = z (say). [1]

Consider two cases:

If x1y2 + x2y1 ≥ x1x2 + y1y2 ≥ 2, then z ≥ α2 + (1− α)2 + 2α(1− α) ≥ 1. [1]

If x1y2 + x2y1 ≤ x1x2 + y1y2, then (x1 − y1)(x2 − y2) ≥ 0. This implies that x1 ≥ y1, x2 ≥ y2 or
x1 ≤ y1, x2 ≤ y2. The later case is similar to the former one if we interchange the points (x1, x2) and
(y1, y2). [1]

If x1 ≥ y1, x2 ≥ y2, then x1y2 ≥ y1y2 ≥ 1 and x2y1 ≥ y1y2 ≥ 1. Therefore, z ≥ 1. [1]

They cannot be strictly separated. [1]
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4. Show that the set K = {(x1, x2) ∈ R2 : |x1| ≤ x2} is a convex cone. Find the dual cone of K. [8]

Solution. Let (x1, x2), (y1, y2) ∈ K =⇒ |x1| ≤ x2 and |y1| ≤ y2. [1]

Let θ1, θ2 ≥ 0. Then θ1(x1, x2) + θ2(y1, y2) = (θ1x1 + θ2y1, θ1x2 + θ2y2). [1]

Now, |θ1x1 + θ2y1| ≤ θ1|x1|+ θ2|y1| ≤ θ1x2 + θ2y2. [1]

Therefore, K is a convex cone.

K∗ = {y = (y1, y2) : xT y = x1y1 + x2y2 ≥ 0, ∀ x = (x1, x2) ∈ K}. [1]

We claim that K∗ = K.

Let (x1, x2) ∈ K =⇒ |x1| ≤ x2. For any (y1, y2) ∈ K, we have |y1| ≤ y2 and [1]

x1y1 + x2y2 ≥ (−x2)(−y2) + x2y2 ≥ 0, since x2, y2 ≥ 0. [1]

=⇒ (x1, x2) ∈ K∗. Therefore, K ⊆ K∗.
Let (x1, x2) ∈ K∗ =⇒ x1y1 + x2y2 ≥ 0, ∀ (y1, y2) ∈ K.

Choose (y1, y2) = (1, 1) =⇒ −x2 ≤ x1, [1]

if (y1, y2) = (−1, 1) =⇒ x1 ≤ x2. [1]

∴ |x1| ≤ x2 =⇒ (x1, x2) ∈ K. Therefore K∗ ⊆ K.

5. Let

uα(x) =
xα − 1

α
, 0 < α ≤ 1, u0(x) = log x.

Here, dom uα = R+ and dom u0 = R++.

(a) Show that for x > 0, u0(x) = lim
α→0

uα(x). [2]

Solution. lim
α→0

uα(x) = lim
α→0

xα log x

1
= log x, (using L’Hopital’s Rule). [2]

(b) Show that uα are concave, monotone increasing, and all satisfy uα(1) = 0. [5]

Solution. It is clear that uα(1) = 0. [1]

u′α(x) = xα−1 ≥ 0, ∀ x. [1]

=⇒ uα is increasing. [1]

u′′α(x) = (α− 1)xα−2 ≤ 0, (∵ 0 ≤ α < 1). [1]

=⇒ uα is concave. [1]

6. Consider a network of n nodes, with directed links connecting each pair of nodes. The variables in the
problem are the flows on each link: xij will denote the flow from node i to node j. The cost of the flow
along the link from node i to node j is given by cijxij , where cij are given constants. The total cost
across the network is

C =

n∑
i,j=1

cijxij .

Each link flow xij is also subject to a given lower bound lij and an upper bound uij .

The external supply at node i is given by bi, where bi > 0 means an external flow enters the network
at node i, and bi < 0 means that at node i, an amount |bi| flows out of the network. We assume that
1T b = 0, i.e., the total external supply equals total external demand. At each node we have conservation
of flow: the total flow into node i along links and the external supply, minus the total flow out along the
links, equals zero. The problem is to minimize the total cost of flow through the network, subject to the
constraints described above. Formulate this problem as a Linear Program. [5]

Solution. This problem can be formulated as the LP:

minimize

n∑
i,j=1

cijxij [1]

subject to bi +

n∑
j=1

xij −
n∑
j=1

xji = 0, i = 1, . . . , n [2]

lij ≤ xij ≤ uij . [2]
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7. Consider the optimization problem [20]

minimize x2 + 1

subject to (x− 2)(x− 4) ≤ 0.

(a) Is the problem convex. Give the feasible set. [3]

Solution. Let f0(x) = x2 + 1, and f1(x) = (x− 2)(x− 4).

Both f0 and f1 are convex as f0(x)
′′

= f1(x)
′′

= 2 > 0 =⇒ the problem is convex. [2]

The feasible set is D = [2, 4]. [1]

(b) Is Slater’s condition satisfied. [1]

Solution. Slater’s condition is satisfied as ∃ x ∈ (2, 4) such that f1(x) < 0. [1]

(c) Find the primal optimal value, and primal optimal point(s). [2]

Solution. The primal optimal point x∗ = 2, and primal optimal value p∗ = 5. [2]

(d) Find the Lagrangian and the Lagrange dual function. [7]

Solution. The Lagrangian is L(x, λ) = x2 + 1 + λ(x− 2)(x− 4) = (1 + λ)x2 − 6λx+ (1 + 8λ). [1]

The Lagrange dual function is g(λ) = infx L(x, λ). [1]

L(x, λ)′ = 2(1 + λ)x− 6λ = 0 or x = 3λ
1+λ . [1]

L(x, λ)′′ = 2(1 + λ) > 0 if λ > −1. [1]

Therefore, L(x, λ) reaches its minimum at x = 3λ
1+λ provided λ > −1. [1]

Thus,

g(λ) =


−9λ2

(1 + λ)
+ 1 + 8λ, λ > −1,

−∞, λ ≤ −1.

[1+1]

(e) State the dual problem. [2]

Solution. The dual problem is

maximize
−9λ2

(1 + λ)
+ 1 + 8λ [1]

subject to λ ≥ 0. [1]

(f) Find the dual optimal value, and dual optimal point(s). [3]

Solution. g(λ)′ =
−18λ

1 + λ
+

9λ2

(1 + λ)2
+ 8 = 0 or λ = 2. [1]

Thus, dual optimal point λ∗ = 2, and dual optimal value d∗ = 5. [2]

(g) Verify that strong duality holds. Can you conclude this directly. [2]

Solution. Since, d∗ = p∗ =⇒ strong duality holds. [1]

We can directly conclude that strong duality holds because Slater’s condition is satisfied. [1]

8. Consider the constrained minimization problem

minimize (x1 − 1)2 + x2 − 2

subject to x2 − x1 = 1

x1 + x2 ≤ 2.

Write the Karush-Kuhn-Tucker conditions for the above problem. Further, use these conditions to find
the optimal point(s) and optimal value. [14]

Solution. The Lagrangian is given by

L(x1, x2, λ, ν) = (x1 − 1)2 + x2 − 2 + λ(x1 + x2 − 2) + ν(x2 − x1 − 1).
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The KKT conditions are [6]

x1 + x2 − 2 ≤ 0,

x2 − x1 − 1 = 0,

λ ≥ 0,

λ(x1 + x2 − 2) = 0,

2(x1 − 1) + λ− ν = 0,

1 + λ+ ν = 0.

Let λ > 0. Then x1 + x2 − 2 = 0. Solving above equations we obtain [1]

x1 = 1
2 , x2 = 3

2 , ν = −1, λ = 0. This contradicts our assumption that λ > 0. [2 1
2 ]

Assume λ = 0. Solving above equations we get [1]

x1 = 1
2 , x2 = 3

2 , ν = −1. [1 1
2 ]

Since the problem is convex and the point x∗ = (x∗1, x
∗
2) = (1

2 ,
3
2 ) satisfy the KKT conditions, we conclude

that x∗ is primal optimal, and optimal value is p∗ = − 1
4 . [2]
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