Indian Institute of Information Technology Allahabad Mathematics - I (SMAT130C) Quiz 02: Tentative Marking Scheme

Duration: 1 Hour Full Marks: 20

Date: November 26, 2016 Time: 15:00 – 16:00 IST

Attempt all the Questions. Numbers indicated on the right in [] are full marks of that particular problem. Please be precise in your answer. You are not allowed to write anything on the question paper.

1. Determine the values of p for which $\int_0^\infty \frac{1-e^{-x}}{x^p} dx$ converges. [6]

Solution. Let
$$I_1 = \int_0^1 \frac{1 - e^{-x}}{x^p} dx$$
 and $I_2 = \int_1^\infty \frac{1 - e^{-x}}{x^p} dx$. [1]

We apply Limit Comparison Test for I_1 and I_2 .

Since $\lim_{x \to 0} \frac{\frac{1-e^{-x}}{x^p}}{\frac{1}{x^{p-1}}} = 1$, by LCT with $\frac{1}{x^{p-1}}$, we see that I_1 is convergent if and only if p-1 < 1, that is, p < 2. [2]

For I_2 applying LCT with $\frac{1}{x^p}$ we see that $\lim_{x \to \infty} \frac{\frac{1-e^{-x}}{x^p}}{\frac{1}{x^p}} = 1$. Thus, I_2 is convergent if and only if p > 1. [2]

Therefore, $\int_0^\infty \frac{1-e^{-x}}{x^p} dx$ is convergent if and only if 1 . [1]

2. Sketch the graph of $r^2 = 8 \cos 2\theta$. Find the area of the region that lies inside the curve $r^2 = 8 \cos 2\theta$ and outside the circle r = 2. [Express the answer in an integral expression. There is no need to evaluate the integral]. [4]

Solution. The graph of the polar equation $r^2 = 8 \cos 2\theta$ is given in figure 2(*a*). [2] Solving the equation $8 \cos 2\theta = 4$, we get $\theta = \pi/6$. Thus, both curves intersect at $(2, \pi/6)$ in the first quadrant. [1]

Because of symmetry the area of the region (see figure 2(b)) is given by

$$4\int_0^{\pi/6} \frac{1}{2} (8\cos 2\theta - 4).$$
 [1]

3. Let $f(x,y) = 3x^4 - 4x^2y + y^2$. Show that f has a local minimum at (0,0) along every line through (0,0). Is (0,0) a saddle point for f. [4]

Solution. Along *x*-axis, the local minimum of the function is at (0,0). [1]

Let y = mx, $m \neq 0$. Then $f(x, mx) = 3x^4 - 4mx^3 + m^2x^2$ is a function of one variable. [1]

As $f''(0,0) = 2m^2 > 0$, by second derivative test, (0,0) is local minimum. [1] Since, $f(x,y) = (3x^2 - y)(x^2 - y)$, we see that in the region between the parabolas $y = 3x^2$ and $y = x^2$, the function takes negative values and is positive everywhere else. Thus, (0,0)is a saddle point for f. [1] $4. \ Let$

$$f(x,y) = \begin{cases} \frac{y}{|y|} \sqrt{x^2 + y^2}, & \text{if } y \neq 0\\ 0, & \text{if } y = 0. \end{cases}$$

Show that all directional derivatives of f exist at (0,0), but f is not differentiable at (0,0). [6]

Solution. Let $U = (u_1, u_2) \in \mathbb{R}^2$ such that ||U|| = 1. Now,

$$D_{(0,0)}f(U) = \lim_{t \to 0} \frac{f(0+tU) - f(0)}{t} = \lim_{t \to 0} \frac{f(tu_1, tu_2)}{t} = 0 \text{ if } u_2 = 0.$$
[1]

If $u_2 \neq 0$, then

$$D_{(0,0)}f(U) = \lim_{t \to 0} \frac{f(tu_1, tu_2)}{t}$$

$$= \lim_{t \to 0} \frac{\frac{tu_2}{|tu_2|}\sqrt{t^2u_1^2 + t^2u_2^2}}{t}$$

$$= \lim_{t \to 0} \frac{\frac{tu_2}{|tu_2|} |t| ||U||}{t}$$

$$= \frac{u_2}{|u_2|}.$$
[1]

Therefore, directional derivatives in all directions exist.

We see that $f_x(0,0) = 0$ and $f_y(0,0) = 1$. If f is differentiable at (0,0) then $f'(0,0) = \alpha = (0,1)$. [1]

Note that

$$\epsilon(h,k) = \frac{\frac{k}{|k|}\sqrt{h^2 + k^2} - k}{\sqrt{h^2 + k^2}}.$$
[1]

If we take h = k, then $\epsilon(h, h) = (1 - \frac{1}{\sqrt{2}})\frac{k}{|k|} \nleftrightarrow 0$ as $k \to 0$. Therefore, $\epsilon(h, k) \not\to 0$ as $(h, k) \to (0, 0)$ [1]