Indian Institute of Information Technology Allahabad Mathematics - I (SMAT130C) Quiz 01: Tentative Marking Scheme

Duration: 30 Minutes

Full Marks: 20

Date: September 03, 2016
Time: 11:00 – 11:30 IST

Attempt all the Questions. Numbers indicated on the right in [] are full marks of that particular problem. All the notations used are standard and same as used in lectures. Please be precise in your answer.

1. Prove the following statements.

(a) Let A be a nonempty subset of \mathbb{R} , and $\alpha \in \mathbb{R}$ be the least upper bound of A. Then there exists a sequence (a_n) in A such that $a_n \longrightarrow \alpha$.

Solution. For every $n \in \mathbb{N}$, there exists $a_n \in A$ such that $\alpha - \frac{1}{n} < a_n$, (otherwise $\alpha - \frac{1}{n}$ would be the supremum).

As α is an upper bound for A, we have $\alpha - \frac{1}{n} < a_n \le \alpha < \alpha + \frac{1}{n}$. [2]

Therefore, $a_n \longrightarrow \alpha$. [1]

(b) Let (x_n) be a sequence of real numbers. If $x_n \longrightarrow x$, then $|x_n| \longrightarrow |x|$. Is the converse true?

Solution. Let $\epsilon > 0$. As $x_n \longrightarrow x$, there exists $N \in \mathbb{N}$ such that $|x_n - x| < \epsilon$ for all $n \ge N$.

Now,
$$||x_n| - |x|| \le |x_n - x| < \epsilon$$
 for all $n \ge N$. [1]

Therefore, $|x_n| \longrightarrow |x|$.

The converse is not true. Consider the sequence $x_n = (-1)^n$. [1]

(c) Let (a_n) be a sequence in \mathbb{R} . If $\sum_{n=1}^{\infty} a_n$ converges, then $a_n \longrightarrow 0$. [2]

Solution. Since $\sum_{n=1}^{\infty} a_n$ is convergent, the sequence (S_n) of partial sums is convergent.

Therefore,
$$a_n = S_n - S_{n-1} \longrightarrow 0$$
. [1]

2. Let (x_n) be sequence defined by

$$x_n = n^{\alpha} (1 + \beta)^{-n} \sin n$$

for all $n \in \mathbb{N}$, where α and β are fixed positive real numbers. Show that (x_n) converges. (Don't try with L'Hopital's Rule!).

Solution. Let
$$y_n = \frac{n^{\alpha}}{(1+\beta)^n}$$
. Then $\frac{y_{n+1}}{y_n} = (\frac{n+1}{n})^{\alpha} \frac{1}{1+\beta} \longrightarrow \frac{1}{1+\beta} < 1$. [2]

Therefore,
$$y_n \longrightarrow 0$$
. [1]

Since,
$$|x_n| \le |y_n|$$
 (or $(\sin n)$ is a bounded sequence), [1]

we have
$$x_n \longrightarrow 0$$
. [1]

3. Let $y \in (0,1)$. Discuss the convergence/divergence of the series

$$\sum_{n=1}^{\infty} [(n+1)y^n + \sin n].$$
 [5]

Solution. Note that
$$a_n = (n+1)y^n \longrightarrow 0$$
 because $\frac{a_{n+1}}{a_n} \longrightarrow y < 1$. [2]

Hence
$$((n+1)y^n + \sin n) \rightarrow 0$$
. [2]

Therefore, the series diverges. [1]