Indian Institute of Information Technology Allahabad

Mid Semester Examination, September 2016

Date of Examination (Meeting): 04.10.2016 (2nd meeting)

Program Code & Semester: B.Tech. (IT), B.Tech. (ECE), Dual Degree - Semester I

Paper Title: Mathematics - I, Paper Code: SMAT130C

Paper Setter: Abdullah Bin Abu Baker & Sumit Kumar Upadhyay

Max Marks: 40

Duration: 2 hours

[4]

[5]

Attempt each question on a new page, and attempt all the parts of a question at the same place. Numbers indicated on the right in [] are full marks of that particular problem. All the notations used are standard and same as used in lectures.

- 1. (a) Evaluate $\lim_{x \to 0} \frac{xe^x \log(1+x)}{x^2}$. [2]
 - (b) Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function such that f(c) > 0 for some $c \in \mathbb{R}$. Show that there exists a $\delta > 0$ such that f(x) > 0 for all $x \in (c \delta, c + \delta)$. [2]
- 2. Find the number of real solutions of the equation $x^{17} e^{-x} + 5x + \cos x = 0$.
- 3. Let f be differentiable on [a, b]. Show that there exist $c_1, c_2, c_3 \in (a, b)$ such that $c_2 \neq c_3$ and $f'(c_2) + f'(c_3) = 2f'(c_1)$.

4. Find the intervals of decrease/increase, intervals of concavity/convexity, points of local minima/local maxima, points of inflection for the function $f(x) = \frac{2x^2 + 1}{x^2 + 1}$. [5]

- 5. (a) Let $f : [0,1] \longrightarrow \mathbb{R}$ and n be a fixed non-negative integer. Suppose $f^{(n+1)}$ exists on [0,1] and $f^{(n+1)}(x) = 0$ for all $x \in [0,1]$. Show that f is polynomial of degree less than or equal to n. [3]
 - (b) Show that for $0 \le x \le 1$,

$$\log(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}.$$
[5]

- 6. (a) Let $f : [a, b] \longrightarrow \mathbb{R}$ be a continuous function such that $f(x) \ge 0$ for all $x \in [a, b]$ and $\int_a^b f(x) dx = 0$. Show that f(x) = 0 for all $x \in [a, b]$. [4]
 - (b) Does there exists an integrable function f on [a, b] such that $f(x) \ge 0$ for all $x \in [a, b]$ and $\int_a^b f(x) dx = 0$ but $f(c) \ne 0$ for some $c \in [a, b]$. [2]
 - (c) Let $f:[0,1] \longrightarrow \mathbb{R}$ be defined as

$$f(x) = \begin{cases} x, & x \text{ is rational} \\ 0, & x \text{ is irrational.} \end{cases}$$

Evaluate the upper and lower Riemann integrals of f and show that f is not integrable. [8]