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Attempt each question on a new page, and attempt all the parts of a question at the same place. Numbers
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your detail. This question paper has two pages. Use of Calculator is NOT allowed.

1. Provide a short proof or answer of the following statements.

(a) Let A,B ∈ R such that A ⊆ B. Then inf B ≤ inf A. [2]

(b) Show that lim
x→0

cos
1

x
does not exist. [2]

(c) Find the radius of convergence of series [2]
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(d) Find the Macluarin series of the function defined by [3]

f(x) =

{
e−1/x

2

, for x 6= 0

0, for x = 0.

(e) Examine the convergence of the integral
∫∞
1
e−x

2

dx. [2]

2. Find the limit of the sequence ( sinn
n , e(

√
n−
√
n+1), log(1 + 1

n3 )) in R3. [5]

3. (a) Let (xn) be a bounded sequence. Assume that xn+1 ≥ xn− 2−n. Show that (xn) is convergent. [4]

(b) Let f : [0, 1] −→ R and an := f( 1
n )− f( 1

n+1 ). Prove the following.

i. If f is continuous, then

∞∑
n=1

an converges. [2]

ii. If f is differentiable and |f ′(x)| < 1
2 , ∀ x ∈ [0, 1], then

∞∑
n=1

an
√
n cosn converges. [4]

4. The region bounded by the functions y = x2 + x+ 1, y = 1 and x = 1 is revolved about the line x = 2.
Find the volume of the solid generated by the shell method. [4]

5. Find the length of the curve [3]

y =
4
√

2

3
x3/2 − 1, 0 ≤ x ≤ 1.



6. The curve x(t) = 2 cos t− cos 2t, y(t) = 2 sin t− sin 2t, 0 ≤ t ≤ π is revolved about the x-axis. Calculate
the area of the surface generated. [4]

7. Consider the function

f(x, y) =

{
3x2y−y3

x2+y2 , if (x, y) 6= (0, 0)

0, if (x, y) = (0, 0).

Answer the following.

(a) Discuss the continuity of f at (0, 0). [2]

(b) Evaluate fy(x, 0) for x 6= 0. [2]

(c) Is fy continuous at (0, 0). [3]

(d) Find the directional derivative of f at (0, 0) in the direction of ( 1√
2
, 1√

2
). [2]

(e) Discuss the differentiability of f at (0, 0). [3]

8. Evaluate the following integrals:

(a)

∫ 1

0

∫ 1

x2

x3ey
3

dy dx. [4]

(b)

∫∫∫
D

z

(x2 + y2 + z2)3/2
dx dy dz; where D is the region bounded above by the sphere

x2 + y2 + z2 = 2 and below by the plane z = 1. [7]

9. Let f(x, y) = (xy2, x2y+ 2x) and C be any square in the plane. Show that the line integral of f along C
depends on the area of the square and not on its location in the plane. [3]

10. Find the absolute maximum and absolute minimum of the function f(x, y) = 2x2 − y2 + 6y on the disk
x2 + y2 ≤ 16. [12]
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